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Nonlinear optical characterization of LiNbO3.
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Maker fringe analysis was adapted to x-cut LiNbO3 wafers to examine variations in birefringence, thickness,
and photoelastic strain. The pump beam was polarized parallel to the crystalline y axis and produced e- and
o-polarized Maker fringes, owing to d31 and d22 , respectively, by rotation of the sample about the y axis. Fit-
ting our model to the o-polarized data enabled computation of the sample thickness to an uncertainty of ap-
proximately 60.01 mm. The accuracy was limited by an implicit 62 3 1024 uncertainty in no that exists in
the commonly used Sellmeier equation of G. J. Edwards and M. Lawrence, Opt. Quantum Electron. 16, 373
(1984). For a pump wavelength lp 5 1064 nm, fitting the model to the e-polarized fringes revealed that ne at
532 nm deviated from the Sellmeier result by typically 21.58 3 1024. The uniformity of ne over a wafer 10
cm in diameter was approximately 64 3 1025. This result is consistent with that expected from composi-
tional variations. Our model included multiple passes of the pump and second-harmonic waves. The effects
of photoelastic strain in producing perturbations and mixing of the e- and o-polarized fringes was investigated.
This was restricted to two experimentally motivated cases that suggested that strains produce rotations of the
optic axis by typically 60.05° about the x axis and y axis with the former assigned to an indeterminant com-
bination of S1 , S2 , and S4 and the latter to an indeterminant combination of S5 and S6 . In both cases the
magnitude of the collective strains is of the order of 1024. The birefringence variations that are due to strain
are of the same magnitude as those expected from compositional variations. The formalism developed here is
used in the subsequent mapping study of x-cut wafers. © 1998 Optical Society of America
[S0740-3224(98)00412-3]

OCIS codes: 160.3730, 160.4330, 190.1900, 190.4400.
1. INTRODUCTION
Maker fringes are defined as oscillations of the second-
harmonic generation (SHG) intensity as a function of the
transmitted pump-beam angle of incidence. They have
often been used as a means to comparatively measure the
second-order susceptibility of nonlinear optical materials
with respect to reference samples.1 To produce Maker
fringes, a sample is typically rotated about a particular
crystalline axis while a polarized pump beam illuminates
a spot on the sample that falls on the rotation axis. The
SHG fringes are then continuously produced as the
sample is rotated. The character of the fringes, however,
depends on the experimental orientation in terms of
pump-beam polarization, choice of rotation axis, choice of
the polarization of the SHG, wavelength of the pump, and
so on. In our analysis of the x-cut sample orientation
presented in this paper we have chosen the geometry
where the sample plate is rotated about an axis parallel
to the y-axis while the pump polarization is also parallel
to the y-axis. With this orientation a single rotation scan
will simultaneously produce both e- and o-polarized
fringes that are dependent on the ordinary indices of re-
fraction at the pump and SHG wavelengths, no

p and no ,
respectively, and on the extraordinary index at the SHG
wavelength ne . The amplitude and oscillation of the o-
polarized fringes depend on no , no

p , d22 , sample thick-
ness, and pump power. Similarly, the amplitude and os-
0740-3224/98/122885-25$15.00 ©
cillation of the e-polarized fringes depend on no , no
p , ne ,

d31 , sample thickness, and pump power. This choice of
this sample orientation simplifies the analysis somewhat,
since the pump is always an ordinary wave and only the
e-polarized SHG is an extraordinary wave that depends
on ne , no , and no

p . In LiNbO3 the compositionally de-
pendent variation in birefringence is primarily due to
variations in ne over the range in which the material is in
a single phase. Over the same compositional range, how-
ever, the ordinary index no is nearly independent of
composition.2 Within this approximation the o-polarized
Maker fringes may then be used to compute the sample
thickness at the position on the sample where the scan
was recorded. The sample thickness data is then avail-
able for use as input for the analysis and for fitting of the
e-polarized fringes.

The e-polarized fringes are sensitive to birefringence,
owing to the orthogonal relation between the pump and
the SHG polarizations. Fitting the e-polarized data,
which is collected from various remote positions about a
sample, with our theoretical model has allowed us to re-
solve birefringence variations of the order of 65 3 1026.
We recently published a preliminary description of Maker
fringe analysis that described the mapping of birefrin-
gence variations across 100-mm-diameter, x-cut LiNbO3
wafers.3 Variations of the birefringence in LiNbO3 may
be tied closely to variations in the Li/Nb mole ratio.2
1998 Optical Society of America
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This feature has been employed in studies of the tempera-
ture dependence of the phase matching for SHG and for
optical parametric oscillation (OPO). The SHG and OPO
studies were used to examine the composition dependence
of the birefringence observed in conjunction with crystal
growth and vapor-transport equilibration experiments.4,5

Early work that suggested the use of Maker fringe analy-
sis as a mapping scheme to examine the uniformity of
LiNbO3 wafers and boules was described by Lunt et al.6

The Maker fringe analysis is useful, however, in ex-
tracting more than just information on nonlinear suscep-
tibility, sample thickness, birefringence, and associated
compositional variations. For example, we recently re-
ported the use of this technique in the study of domain-
inverted z-cut LiNbO3 samples and also showed that the
analysis may be used to examine pyroelectric effects and
processing history for z-cut material.7,8 Effects that are
due to photoelastic strain are also revealed in the Maker
fringe data for x-cut LiNbO3. For example, strain that is
inherent in the material and that produces refractive-
index variations in the range of 1025 –1024 has been ob-
served with linear interferometry.9 We consider the
analysis of two cases involving photoelastic strain that
are revealed in the Maker fringe data for the x-cut mate-
rial. The first case deals with a strain-induced admix-
ture of the dominant e-polarized SHG fringes into the
weaker o-polarized fringes. This is modeled by consider-
ation of strain-induced rotation of the optic axis about the
x axis. The degree of admixture is directly related to the
strain that produces the rotation of the optic axis. We
found that the magnitude of the strain associated with
this admixture is approximately 1 3 1024.
Furthermore, the admixture can be associated with static
axial strains S1 , S2 and with static shear strain S4 .
However, it is not possible to uniquely assign the contri-
bution or sign of these strain components. The second
photoelastic artifact involves a strain-induced rotation of
the optic axis about the y axis. This effect is attributed to
producing small asymmetric angular displacements (with
respect to pump-beam angle of incidence u i) that are ob-
served in the e-polarized fringes. These strain-induced
fringe displacements may be distinguished from composi-
tionally induced variations in birefringence, since the lat-
ter necessarily produce symmetric breathing of the
fringes with respect to u i . The magnitude of the axis ro-
tation that produces these asymmetric fringe displace-
ments is approximately 0.05°, and the magnitude of the
corresponding strain is approximately 5 3 1025. The ef-
fect is assigned to static S5 and S6 shear strains, but, as
with the first example of photoelastic variations to the
Maker fringes, it is not possible to uniquely assign the
contribution of these two components. The analysis de-
veloped in this paper is subsequently used in a companion
study that examines, in some detail, Maker fringe map-
ping of x-cut LiNbO3 wafers that were sequentially cut
from their host boules.10

2. DERIVATION AND SOLUTION OF THE
NONLINEAR WAVE EQUATIONS
We consider the case of a single transmitted pump beam
at frequency vp and wavelength lp that is polarized par-
allel to the LiNbO3 y-axis while the plate is rotated about
the y-axis. The geometry of the orientation is shown in
Fig. 1. The y-polarized (that is, o-polarized) pump field
results in both o- and e-polarized SHG fields at v (v
5 2vp), owing to the nonlinear source polarization that
has an o-polarized component Py and an e-polarized com-
ponent Pz . Figure 1 illustrates the interaction in terms
of the wave vectors of the input pump field, the nonlinear
source polarization in the media, and the SHG fields. All
the fields are assumed to be plane waves of infinite trans-
verse extent. The boundary conditions require that the
amplitudes and phases of the components of the electric
and magnetic fields parallel to the interfaces be continu-
ous across the interfaces. These constraints result in the
projections of the wave-vector components as illustrated
in Fig. 1 and allow for the computation of the refraction
angles us (for the e-polarized SHG field), up (for the o-
polarized pump field), and fs (for the o-polarized SHG
field), all in terms of the incident angle of the pump u i .
Appendix A lists and defines the wave vectors, indices of
refraction, electric- and magnetic-field components, non-
linear source polarizations, and other terms used in the
description of the fields. The reader will find it conve-
nient to refer to this appendix when reading the develop-
ment of the formalism that follows.

The complex y-polarized pump field in the LiNbO3 is

E y
P,T1 5 ŷTEy

P,i exp@i~g x
px 1 g z

pz 2 vpt !#. (1)

The factor T is the Fresnel transmission coefficient for the
pump-field amplitude. The components of the complex
nonlinear source-polarization vector are obtained from
the contraction of the third-rank tensor dijk with the
second-rank tensor Ej

PT1Ek
PT1 and are given by

P 5 ~ ŷd22 1 ẑd31!~TEy
P,i!2 exp@i~kx

Px 1 kz
Pz 2 vt !#.

(2)

The unit vectors x̂, ŷ, and ẑ are parallel to the principal
axes of the crystal. The standard abbreviated notation in
which the third-rank tensor dijk is represented as a 3
3 6 matrix with d22 [ d222 and d31 5 d32 [ d322 was
used.

Fig. 1. A schematic showing the wave vectors g, k, k, k s, k s,
k p, and the associated angles of incidence, reflection, and refrac-
tion for the input pump field, the reflected e- and o-polarized
SHG fields, the transmitted e-polarized SHG field, the transmit-
ted o-polarized SHG field, and the nonlinear source polarization,
respectively.
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A set of nonlinear wave equations describing the SHG
may be derived from Maxwell’s equations with the inclu-
sion of the nonlinear source polarization given by Eq. (2).
Maxwell’s curl equations for nonmagnetic, nonabsorbing
media are

“ 3 H 5 eoẽ •

]E

]t
1

]P

]t
, (3a)

“ 3 E 5 2mo
]H
]t

. (3b)

The second-rank dielectric tensor ẽ is diagonal in the sys-
tem of coordinates in which x, y, and z conform to princi-
pal axes of the crystal. For uniaxial LiNbO3, no

2 5 e11
5 e22 and ne

2 5 e33 . In Section 3 we discuss photoelas-
tic perturbations to the material in which e ij is no longer
diagonal and in which the crystal is no longer uniaxial.
In such cases a suitable transformation of coordinates
must be performed to restore e ij to a diagonal form. The
wave propagation is confined to the xz plane so that par-
tial derivatives with respect to y vanish. The time de-
pendence of the SHG fields are represented by
E(x, y, z, t) 5 E(x, y, z)exp(2iv t) and H(x, y, z, t)
5 H(x, y, z)exp(2iv t). With the understanding that
partial derivatives are taken with respect to the sub-
scripted variable, Eq. (3) may be written in component
form as

2]zHy 5 2iveono
2Ex , (4a)

2]xHz 1 ]zHx 5 2iveono
2Ey 2 ivPy , (4b)

]xHy 5 2iveone
2Ez 2 ivPz , (4c)

2]zEy 5 ivmoHx , (4d)

2]xEz 1 ]zEx 5 ivmoHy , (4e)

]xEy 5 ivmoHz . (4f )

The substitution of Hx and Hz from Eqs. (4d) and (4f ) into
Eq. (4b) leads to a linear inhomogeneous wave equation
for Ey ,

]xx
2 Ey 1 ]zz

2 Ey 1 k2no
2 Ey 5 2

k2

eo
Py . (5)

The derivation of the corresponding wave equations for
Ex and Ez requires slightly more work. Solving Eq. (4e)
for Hy and substituting the result into Eqs. (4a) and (4c)
results in two equations that contain terms proportional
to the mixed partial derivatives ]xz

2 Ez and ]xz
2 Ex . We

eliminate these terms with the following procedure. The
nonlinear medium is assumed to be charge free, and
therefore “ • D 5 0. In the presence of the nonlinear
source polarization the electric displacement vector D
5 eoẽ • E 1 P becomes

D 5 eo~ x̂no
2 Ex 1 ŷno

2 Ey 1 ẑne
2 Ez! 1 ŷPy 1 ẑPz .

(6)

Since ]y [ 0 in the present case, the constraint “ • D
5 0 gives
]x Ex 5
21

eono
2

~eone
2]z Ez 1 ]z Pz!, (7a)

]zEz 5
21

eone
2 ~eono

2]x Ex 1 ]z Pz!, (7b)

which leads to

]zx
2 Ex 5

21

eono
2

~eone
2]zz

2 Ez 1 ]zz
2 Pz!, (7c)

]xz
2 Ez 5

21

eone
2

~eono
2]xx

2 Ex 1 ]xz
2 Pz!. (7d)

Note that the order of partial differentiation may be in-
terchanged in Eqs. (7c) and (7d). Using Eqs. (7c) and (7d)
and Eq. (4), we then derive the linear inhomogeneous
wave equations for Ex and Ez , which are

S no

ne
D 2

]xx
2 Ex 1 ]zz

2 Ex 1 k2no
2Ex 5 2

1

eone
2

]xz
2 Pz , (8a)

]xx
2 Ez 1 S ne

no
D 2

]zz
2 Ez 1 k2ne

2Ez 5 2
1

eono
2

]zz
2 Pz

2
k2

e0

Pz . (8b)

The factor ]xz
2 Pz is proportional to d31 sin(2up) and ]zz

2 Pz
and to d31 sin2(up).

These terms are examples of effective nonlinear coeffi-
cients that are discussed by many authors in regard to
cases in which the pump-beam polarization within the
nonlinear medium does not conform to a principal dielec-
tric axis.11,12

With the factors Px , Py , and Pz all zero, the fields Ex
h ,

Ey
h , and Ez

h that solve the homogeneous equations corre-
sponding to Eqs. (5) and (8) are

Ex
h 5 Ex

o exp@i~kx
sx 1 kz

sz 2 iv t !#, (9a)

Ey
h 5 Ey

o exp@i~kx
sx 1 kz

sz 2 iv t !#, (9b)

Ez
h 5 Ez

o exp@i~kx
sx 1 kz

sz 2 iv t !#. (9c)

The extraordinary index as a function of us , n(us), is
found by substitution of Eqs. (9a) and (9c) into Eqs. (8),
where

n~us! 5 S ne
2no

2

ne
2 sin2 us 1 no

2 cos2 us
D 1/2

or (10a)

1

n2~us!
5

sin2 us

no
2

1
cos2 us

ne
2

, (10b)

which is a well-known result from crystal optics, when the
definition of us is noted as given in Fig. 1.

We have constrained the problem to experimental re-
gimes in which the pump field is assumed constant and
undepleted as it traverses the nonlinear medium. The
general solutions of Eqs. (5) and (8) are then found when
particular solutions of the inhomogeneous equations are
added to the respective homogeneous equations. These
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general solutions representing the e- and o-polarized SHG
fields propagating from x 5 0 to x 5 L are

Ex 5 $Ex
o exp@i~kx

sx 1 kz
sz !#

1 Ax exp@i~kx
px 1 kz

pz !#%exp~2iv t !, (11a)

Ey 5 $Ey
o exp@i~kx

sx 1 kz
sz !#

1 Ay exp@i~kx
px 1 kz

pz !#%exp~2iv t !, (11b)

Ez 5 $Ez
o exp@i~kx

sx 1 kz
sz !#

1 Az exp@i~kx
px 1 kz

pz !#%exp~2iv t !. (11c)

The factors Ax , Ay , and Az are found by direct substitu-
tion of Eqs. (11) into Eqs. (5) and (8), which yields

Ax 5
d31~Ey

P,iT !2kx
pkz

p

eone
2Fk2no

2 2 S no

ne
kx

pD 2

2 ~kz
p!2G , (12a)

Ay 5
d22~Ey

P,iT !2

eo@~no
p!2 2 no

2#
, (12b)

Az 5
d31~Ey

P,iT !2@~kz
p!2 2 ~nok !2#

no
2eoFk2ne

2 2 S ne

no
kz

pD 2

2 ~kx
p!2G . (12c)

Taken together, Eqs. (11) and (12) represent the general
solution to the problem of SHG for the orientation shown
in Fig. 1, where all the fields are plane waves and the
pump field is undepleted as it propagates through the
crystal. The results are derived directly from Maxwell’s
equations with the full birefringence of the media kept.
The homogeneous solutions are consistent with the stan-
dard results from crystal optics. The dependence of the
nonlinear interaction on the pump-beam polarization and
propagation directions follow directly from the procedures
used in deriving Eqs. (1)–(12) and may be generalized to
arbitrary polarization and propagation directions in the
uniaxial media.

To complete the solution and find the SHG within the
nonlinear media, we solve for the homogeneous field am-
plitudes Ex

o , Ey
o , and Ez

o by evoking the boundary condi-
tions, which require that the tangential components of E
and H be continuous across the boundary at x 5 0. The
components of the complex electric field at v generated on
reflection from the first interface are

Ex
R1 5 Ex

~R1!o exp@i~2kx x 1 kz z 2 v t !#, (13a)

Ey
R1 5 Ey

~R1!o exp@i~2kx x 1 kz z 2 v t !#, (13b)

Ez
R1 5 Ez

~R1!o exp@i~2kx x 1 kz z 2 v t !#. (13c)

The ratio of the homogeneous field amplitudes Ex
o and Ez

o

is also required. We may compute this quantity from “

• D 5 0 by using Eqs. (11a) and (11c) and setting Pz
5 Py 5 0. The ratio of the reflected homogeneous field
amplitudes Ex

(R1)o and Ez
(R1)o is calculated in a similar

manner. The results are
Ex
o 5 2

ne
2kz

s

no
2kx

s Ez
o , (14a)

Ex
~R1!o 5

kz

kx

Ez
~R1!o. (14b)

At the first interface (x 5 0) there is no input field at v,
but this is not so at the second interface (x 5 L). The
boundary conditions that require the continuity of the
tangential fields at x 5 0 give

Hy
R1u~x50 ! 5 Hyu~x50 ! , (15a)

Hz
R1u~x50 ! 5 Hzu~x50 ! , (15b)

Ey
R1u~x50 ! 5 Eyu~x50 ! , (15c)

Ez
R1u~x50 ! 5 Ezu~x50 ! . (15d)

Equations (15) must be valid at any point on the line de-
fined by x 5 0 in Fig. 1. The transverse phases

exp~ikz
p z !, exp~ikz

s z !, exp~ikz z !,

exp~ikz
s z !, exp~ikz z !

must therefore be equal at any point z on this line. This
introduces the further constraint that kz

p 5 kz
s 5 kz

5 kz 5 kz
s . From Eqs. (4e) and (4f ) and Eqs. (14) and

(15), the solutions for the electric-field amplitudes Ez
o ,

Ez
(R1)o, Ey

o , and Ey
(R1)o are

Ez
o 5

Ax 2 @kx
p/kz 1 kx /kz 1 kz /kx# Az

@~ne /no!2kz /kx
s 1 kx

s /kz 1 kx /kz 1 kz /kx#
,

(16a)

Ez
~R1!o 5 Ez

o 1 Az , (16b)

Ey
o 5 2Ay

@kx 1 kx
p#

@kx 1 kx
s #

, (16c)

Ey
~R1!o 5 Ay

@kx
s 2 kx

p#

@kx
s 1 kx#

. (16d)

And Ex
o is then found from Eq. (14a).

The boundary conditions on the tangential fields allow
the angles uR , uP , uS , and fS to all be expressible in
terms of u i :

uR 5 u i , (17a)

sin uP 5
sin u i

no
p , (17b)

sin uS 5
no sin u i

@~none!
2 1 ~no

2 2 ne
2!sin2 u i #

1/2
, (17c)

sin fs 5
sin u i

no
. (17d)

If the media to the left-hand side of the boundary at x
5 0 is substantially dispersive, then Eq. (17a) is not
valid and the reflected pump and SHG fields will emerge
at different angles. This fact was used in a classic ex-
ample of the generation of SHG on boundary reflection.13

For computation and display of the reflected and trans-
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mitted fields, it is convenient to use the normalized
factors Ēx

(R1)o 5 Ex
(R1)o/N, Ēy

(R1)o 5 Ey
(R1)o/M, Ēz

(R1)o

5 Ez
(R1)o/N, Āx 5 Ax /N, Āy 5 Ay /M and Āz 5 Az /N

with M and N defined by

N 5
d31

eo
~Ey

P,i!2, (18a)

M 5
d22

eo
~Ey

P,i!2. (18b)

The pump-field amplitude in the nonlinear media is o po-
larized, and the corresponding Fresnel transmission coef-
ficient T for the pump field is

T 5
2 cos u i

no
p cos up 1 cos u i

. (19)

The factors Āx , Āy , and Āz become

Āx 5
T2 sin 2 up

2ne
2F S no

no
pD 2

2 S no cos up

ne
D 2

2 sin2 upG , (20a)

Āy 5
T2

@~no
p!2 2 no

2#
, (20b)

Āz 5

T2F sin2 up 2 S no

no
pD 2G

no
2F S ne

no
pD 2

2 S ne sin up

no
D 2

2 cos2 upG . (20c)

The normalized reflected field amplitude Ēz
(R1)o 5 Ēz

o

1 Āz where the homogeneous field amplitude Ēz
o reduces

to

Ēz
o 5

Āx 2 Āz@cot up 1 2 csc 2u i#

F S ne

no
D 2

tan us 1 cot us 1 2 csc 2u iG . (21)

The normalized e-polarized SHG power produced in re-
flection at x 5 0 is defined by P̄e

R1 5 uĒx
(R1)ou2 1 uĒz

(R1)ou2

or

P̄e
R1 5 uĒz

~R1!ou2 sec2 u i . (22)

The corresponding normalized o-polarized reflected SHG
power is defined by P̄o

R1 5 uĒy
(R1)ou2 and is given by

P̄o
R1 5 ~Āy!2Fno cos fs 2 no

p cos up

no cos fs 1 cos u i
G2

. (23)

Figure 2 illustrates a graph of both P̄e
R1 and P̄o

R1 as func-
tions of u i for lp 5 1064 nm and the sample temperature
Ts 5 25 °C. The Sellmeier equations defined by Ed-
wards and Lawrence, which rely on the refractive-index
data of Nelson and Mikulyak, were used in the generation
of all graphical results displayed in this paper.14,15

Figure 2 suggests that the SHG generated on surface
reflection should be useful for measuring variations in d22
and d31 near the surface of a sample. Indeed, Bloember-
gen has shown that the surface-generated SHG arises
from a layer of radiating dipoles approximately l in
thickness.16 Experimentally resolving such variations
should be a simple matter. In practice, however, a flat
sample plate with both surfaces polished and parallel ren-
ders such a direct measurement essentially impossible.
This is because the combined reflections of the pump and
forward-traveling SHG from the second surface together
produce a strong backward-traveling SHG signal that
cannot be separated from the reflection-generated SHG of
the first surface. Surface-generated SHG was used to ex-
amine the reduction in x (2) suffered by proton-exchanged
layers in LiNbO3, where the samples were polished into a
wedge shape to avoid the problems of second-surface
reflections.17 Our motivation in this paper, however, is
to develop schemes for the analysis of LiNbO3 plates rou-
tinely fabricated in production environments, and consid-
eration of wedge-shaped samples is therefore not an op-
tion.

To obtain accurate fits of theory with data, we must
consider the dependence of the Maker fringe patterns on
multiple reflections of the pump and the SHG and on the
divergence of the pump beam traversing the sample. In
many practical situations in which the samples are ap-
proximately 1 mm in thickness and in which the focused
beam diameter of the pump is in the range of 40–100 mm,
the overlap and interference of multiple internal pump
and SHG reflections will contribute to a fine structure in
the Maker fringe patterns for u i within approximately
65° of the normal, since the plate will act as an interfer-
ometer. As illustrated below, these interferometric ef-
fects may drastically alter the envelope of the Maker
fringes. Additionally, the scalar addition of the multiple
SHG passes that occur for uu iu > 5° can still change the
envelope of the Maker fringes by several percent. For
cases of samples that are relatively thick with respect to
the Gaussian confocal beam parameter of the pump, the
effects of pump-beam divergence on the Maker fringe pat-
terns must be considered. Beam-divergence effects have
been described by Jerphagnon and Kurtz, who, neverthe-
less, did not consider the interferometric action of the
sample in perturbing the Maker fringe envelopes.1 Ex-
perimentally, however, we found that with the nominally
1-mm-thick samples of interest here, and with the range

Fig. 2. The normalized e- and o-polarized SHG generated on re-
flection of the pump field at the first surface (x 5 0) as a function
of pump angle of incidence u i .



2890 J. Opt. Soc. Am. B/Vol. 15, No. 12 /December 1998 N. A. Sanford and J. A. Aust
of beam diameters given above, the effects of beam diver-
gence do not noticeably perturb the envelopes of the
Maker fringes. Thus, if the Maker fringe analysis is to
be used for meaningful comparisons of the ratios of non-
linear optical coefficients, or if the fringe envelopes repre-
sent the quantity of interest in comparing various
samples, then the envelopes must be accurately predicted
and the appropriate correction factors included in the
analysis. Indeed, it has recently come to our attention
that the importance of including multiple passes of the
pump and the SHG in measurements of d coefficients has
been further verified by Shoji et al.18

We continue our treatment of the e- and o-polarized
SHG fields for the crystal orientation shown in Fig. 1 by
first considering a single pass of the pump and SHG fields
through the crystal. We then compute corrections to the
reflected and transmitted SHG fields that emerge from
the sample plate by including contributions from multiple
Fresnel reflections of the pump and the SHG. The com-
ponents of the e-polarized SHG field incident on the
boundary at x 5 L from x , L are given by Eqs. (11a)
and (11c). The geometry of this situation is illustrated in
Fig. 3. The general solutions for the e-polarized SHG
fields propagating from x 5 L to x 5 0 are given by

Ex
R2 5 (Ex

~R2!o exp$i@kx
s~2x 1 L ! 1 kz

s z#%

1 Ax
~2 ! exp$i@kx

p~2x 1 L ! 1 kz
pz#%)exp~2iv t !,

(24a)

Fig. 3. A schematic showing the fields retained when we con-
sider multiple reflections of the SHG. At x 5 0 the y-polarized
pump field Ey

P,i produces y-polarized reflected field Ey
R1, x-

polarized reflected field Ex
R1, z-polarized reflected field Ez

R1, y-
polarized transmitted field Ey , x-polarized transmitted field Ex ,
and z-polarized transmitted field Ez . These fields reflected and
transmitted at x 5 L produce the associated fields superscripted
by R2 and T2 , respectively. These latter fields, when reflected
and transmitted from the boundary at x 5 0, produce the fields
superscripted by R3 and T3 , respectively. Finally, with reflec-
tion and transmission at the boundary x 5 L, the R3 and T3 su-
perscripted fields produce the R4 and T4 superscripted fields, re-
spectively.
Ez
R2 5 (Ez

~R2!o exp$i@kx
s~2x 1 L ! 1 kz

s z#%

1 Az
~2 ! exp$i@kx

p~2x 1 L ! 1 kz
p z#%)exp~2iv t !.

(24b)
The components of the e-polarized SHG field transmitted
through the boundary at x 5 L are given by

Ex
T2 5 Ex

~T2!o exp$i@kx~x 2 L ! 1 kz z#%exp~2iv t !,
(25a)

Ez
T2 5 Ez

~T2!o exp$i@kx~x 2 L ! 1 kz z#%exp~2iv t !.
(25b)

The input and output surfaces of the crystal are assumed
parallel. The continuity of the transverse phases of the
fields at x 5 L requires sin ui 5 sin uT or uT 5 u i , and
the magnitudes of the wave-vector components kx and kz
appearing in Eqs. (25) are thus the same as those for the
SHG fields reflected from the boundary at x 5 0. The
factors Ax

(2) and Az
(2) describing the inhomogeneous solu-

tions of the e-polarized SHG fields traveling from x 5 L
to x 5 0 are found by insertion of Eqs. (24a) and (24b)
into Eqs. (8a) and (8b), respectively. The results are

Ax
~2 ! 5 2Ax R2, (26a)

Az
~2 ! 5 Az R2. (26b)

The factor R2 is the square of the Fresnel (internal) re-
flection coefficient of the o-polarized pump field at the
crystal–air interface and is given by

R2 5 Fno
p cos up 2 cos u i

no
p cos up 1 cos u i

G2

. (27)

The continuity of the tangential field components at the
boundary x 5 L require

Ezu~x5L ! 1 Ez
R2u~x5L ! 5 Ez

T2u~x5L ! , (28a)

Hyu~x5L ! 1 Hy
R2u~x5L ! 5 Hy

T2u~x5L ! . (28b)

These equations are solved in a manner similar to that
used for the e-polarized SHG field reflected from the first
surface as given above in the discussion surrounding Eqs.
(15). The solution for the e-polarized component Ez

(T2)o is

Ez
~T2!o 5 b1Ez

o exp~ikx
s L ! 1 ~Azb2 1 Axb3!exp~ikx

p L !

1 @Az
~2 !b4 1 Ax

~2 !b3#. (29)

The factors b1 –b4 are given by

b1 5 F 2a1

a1 1 a2
G , (30a)

b2 5 Fa1 1 kx
p

a1 1 a2
G , (30b)

b3 5 F 2kz
p

a1 1 a2
G , (30c)

b4 5 Fa1 2 kx
p

a1 1 a2
G (30d)

a1 5 Fkx
s 1 S ne

no
D 2 ~kz

s!2

kx
s G , (30e)
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a2 5 Fkx 1
kz

2

kx
G . (30f )

The normalized e-polarized SHG power P̄e
T2 leaving the

crystal at x 5 L is given by P̄e
T2 5 uĒz

(T2)ou2 1 uĒx
(T2)ou2 or

P̄e
T2 5 $H1

2 1 H2
2 1 H3

2 1 2H1H3 cos~kx
s L !

1 2H2H3 cos~kx
p L !

1 2H1H2 cos@~kx
s 2 kx

p!L#%sec2 u i . (31)

The factors H1–H3 (which should not be confused with
magnetic field amplitudes) are defined by

H1 5 Ēz
ob1 , (32a)

H2 5 ~Āzb2 1 Āxb3!, (32b)

H3 5 @Āz
~2 !b4 1 Āx

~2 !b3#. (32c)

The normalized field amplitudes Ēx
(T2)o, Ēz

(T2)o and factors
Āx

(2) , Āz
(2) are defined by Ex

(T2)o/N, Ez
(T2)o/N, Ax

(2)/N, and
Az

(2)/N, respectively. Figure 4(a) is a graph of Eq. (31) for
lp 5 1064 nm, L 5 1 mm, and the crystal temperature
Ts 5 25 °C. Equation (31) represents the first level of
approximation (single pass of pump and SHG) in the use
of Maker fringe analysis to examine birefringence varia-
tions in LiNbO3 plates.

Graphical examples of Eq. (31) illustrate the sensitivity
of the Maker fringes to small changes in birefringence.
For simplicity, we regard deviations in the birefringence
calculated from the Sellmeier equations as arising en-
tirely from variations in ne . This is motivated by the
sensitivity of ne (and the insensitivity of no) to fluctua-
tions in the Li/Nb mole ratio.2 The extraordinary index
at the second-harmonic wavelength derived from the Sell-
meier equation is defined as ne

s . We introduce the factor
Dsne 5 ne 2 ne

s , which represents a deviation of ne from
the value obtained from the Sellmeier equation. In this
regard Fig. 4(b) illustrates the sensitivity of Eq. (31) to
variations in ne with consideration of Dsne 5 5 3 1026

and Dsne 5 2 3 1025. The magnitude of both H1 and H2
at normal incidence is ;58, and the magnitude of H3 is
;0.004. The factors involving H3 may therefore be ig-
nored. Graphs of Eq. (31) at the pump wavelengths 1319
and 1090 nm, the latter of which permits critical phase
matching, are shown in Figs. 4(c) and 4(e), respectively.
Clearly, since our formalism was derived in the approxi-
mation that neglected pump depletion, a general applica-
tion of Eq. (31) to predict the normalized SHG power near
the phase-matching peak indicated in Fig. 4(e), for arbi-
trary values of pump-beam diameter and sample thick-
ness, is problematic. Nevertheless, the model is useful in
the regime of limited conversion efficiency and may be
used to locate the angular position upm of critical phase-
matching peaks in any case. In Fig. 4(f ) we include an
example that illustrates the variation of upm for Dsne
5 2 3 1025. A comparison of Figs. 4(a)–4(f ) reveals
that the Maker fringe patterns produced by all three
pump wavelengths display comparable sensitivity to
Dsne 5 2 3 1025. Interestingly, Fig. 4(f ) shows that for
samples 1 mm thick, no particular advantage is gained, in
terms of using a fringe shift to detect a variation in bire-
fringence Dsne , with operation at a pump wavelength
that yields a critical phase-matching angle. Indeed, the
shift in upm is only approximately 20.11° for Dsne 5 2
3 1025 and lp 5 1090 nm.

We now compute the case of a single pass of the pump
and SHG that produces o-polarized SHG fringes and com-
pare the relative SHG power with the corresponding e-
polarized fringes. The o-polarized field incident from the
left on the boundary at x 5 L is given by Eq. (11b). The
geometry of this situation is illustrated in Fig. 3. The
general solution for the o-polarized SHG field propagating
from x 5 L to x 5 0 is

Ey
R2 5 (Ey

~R2!o exp$i@kx
s~2x 1 L ! 1 kz

sz#

1 Ay
~2 ! exp$i@kx

p~2x 1 L ! 1 kz
pz#%)exp~2iv t !,

(33)

where Ay
(2) 5 AyR2. The o-polarized SHG field transmit-

ted through the boundary at x 5 L is given by

Ey
T2 5 Ey

~T2!o exp$i@kx~x 2 L ! 1 kzz#%exp~2iv t !.
(34)

Continuity of the tangential fields at x 5 L requires

Eyu~x5L ! 1 Ey
R2u~x5L ! 5 Ey

T2u~x5L ! , (35a)

Hzu~x5L ! 1 Hz
R2u~x5L ! 5 Hz

T2u~x5L ! . (35b)

Note that Hz , Hz
R2, and Hz

T2 are found by use of Eq. (4f ).
The normalized o-polarized SHG leaving the plate at x
5 L is given by P̄o

T2 5 uĒy
(T2)ou2, where Ēy

(T2)o

5 Ey
(T2)o/M and

Ēy
~T2!o 5 G1 exp~ikx

s L ! 1 G2 exp~ikx
p L ! 1 G3 . (36)

P̄o
T2 then becomes

P̄o
T2 5 G1

2 1 G2
2 1 G3

2 1 2G1G3 cos~kx
s L !

1 2G2G3 cos~kx
p L ! 1 2G1G2 cos@~kx

s 2 kx
p!L#.

(37)

The factors G1 –G3 are given by

G1 5 F 2kx
s

kx
s 1 kx

G Ēy
o , (38a)

G2 5 Fkx
p 1 kx

s

kx 1 kx
s G Āy , (38b)

G3 5 Fkx
s 2 kx

p

kx 1 kx
s G Āy

~2 ! , (38c)

with Āy
(2) 5 Ay

(2)/M. A graph of Eq. (37) is shown in Fig.
5(a) for lp 5 1064 nm, L 5 1 mm, and Ts 5 25 °C.
Equation (37) is useful for many practical applications
that involve the mapping of thickness variations across a
LiNbO3 plate with o-polarized Maker fringe data. Figure
5(b) illustrates the sensitivity of Eq. (37) to a variation in
L of 0.1 mm. At normal incidence the magnitude of the
factors G1 and G2 is ;1.26 and the magnitude of G3 is
;0.0037. Consequently, high-frequency fringes propor-
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Fig. 4. (a) The normalized e-polarized SHG power P̄e
(T2) as a function of pump angle of incidence u i for lp 5 1064 nm, Ts 5 25 °C and

L 5 1 mm. (b) Graphs showing normalized e-polarized SHG P̄e
(T2) as a function of pump angle of incidence u i for lp 5 1064 nm, which

compare the sensitivity of the fringe patterns with small changes in birefringence and thickness. The result shows that a deviation
Dsne 5 5 3 1026 of ne from the Sellmeier result may be resolved but that variations in sample thickness of 61 mm near L 5 1 mm are
not resolved. Ts 5 25 °C for all graphs shown. (c) P̄e

(T2) for lp 5 1319 nm, Ts 5 25 °C and L 5 1 mm. (d) Graph illustrating the sen-
sitivity of P̄e

(T2) to a variation Dsne 5 2 3 1025 for lp 5 1319 nm, Ts 5 25 °C, and L 5 1 mm. (e) Graph illustrating the critical phase
matching peak for lp 5 1090 nm, Ts 5 25 °C, and L 5 1 mm. (f ) Graphs illustrating the shift in the critical phase matching angle upm

that is due to a variation Dsne 5 2 3 1025 for lp 5 1090 nm, Ts 5 25 °C, and L 5 1 mm.
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tional to cos kx
p L and cos kx

s L occur, but they contribute to
an amplitude perturbation of only approximately 0.3%.

A number of factors must be considered for the practi-
cal application of Maker fringe analysis to the examina-
tion of birefringence variations in LiNbO3. For example,
the conversion efficiency should be strong enough that an
adequate signal-to-noise ratio exists but not so strong
that photorefractive instabilities are a problem. Indeed,
since it is desirable to examine production wafers that are
;10 cm in diameter, the notion of maintaining a wafer at
a precisely defined temperature, as may be required for
maintaining phase matching, or of continuously anneal-
ing out photorefractive damage at elevated temperatures
is impractical. A particular concern was that photore-
fractive coupling between e- and o-polarized SHG similar
to effects reported in LiNbO3 wave-guide devices would
occur.19 Experimentally, however, we found that with
lp 5 1064 nm, pump powers in the range of 700 mW–1
W, and pump-beam diameters in the range of 50–100 mm,
sufficient power for both the e- and o-polarized SHG was
produced without introduction of photorefractive insta-
bilities. We arrived at this conclusion by observing that
repetitive scans at a single location on a sample would
continue to produce the same e- and o-polarized fringe
patterns within the experimental error. For the data
presented in this paper, the continuous-wave pump was
chopped at 800 Hz and the SHG was detected with a pho-
tomultiplier tube and a lock-in amplifier.

As is discussed in more detail in Section 4, another is-
sue of practical concern involves photoelastic strain. For
lp 5 1064 nm, comparison of Figs. 4(a) and 5(a) reveals
that the relative intensity ratio of the e- and o-polarized
fringe patterns is approximately 1000:1. Thus, to resolve
the weaker o-polarized signal, the dominant e-polarized
signal must be rejected with a polarizer of suitable qual-
ity. We found that with the polarizer set to reject the e-
polarized SHG for a scan taken at a particular location on
the sample, translating the sample a few millimeters
along y or z and repeating the scan would often reveal cor-
ruption of the o-polarized fringes by the mixture of extra
fringes that corresponded exactly to the e-polarized SHG.
Thus the extinction condition necessary for resolving the
weaker o-polarized signal by rejection of the dominant e-
polarized signal varied across the sample. The corre-
Fig. 5. (a) Normalized o-polarized SHG P̄o
(T2) as a function of u i for lp 5 1064 nm, Ts 5 25 °C and L 5 1 mm. (b) P̄o

(T2) illustrating the
resolution of thickness variations where L 5 1 mm 6 0.1 mm. (c) Normalized o-polarized SHG P̄o

(T2) as a function of u i for lp

5 1319 nm, Ts 5 25 °C, and L 5 1 mm. (d) Normalized o-polarized SHG P̄o
(T2) as a function of u i for lp 5 1090 nm, Ts 5 25 °C and

L 5 1 mm.
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sponding variation in the polarizer orientation was ap-
proximately 60.1°. We attributed these effects to strain-
induced photoelastic perturbations in the samples. In
Section 4 we demonstrate that strains of the order of 1025

are sufficient to induce a small rotation of the optic axis
about the x-axis, which results in the leakage artifacts ob-
served. Photoelastic variations in birefringence on this
order were observed in LiNbO3 by means of measuring
wave-front distortion.9

A comparison of Figs. 4 and 5 reveals that the pump
wavelength lp 5 1064 nm, in addition to being conve-
niently obtained from a Nd:YAG laser, fortuitously pro-
vides better resolution of these strain artifacts than the
other pump wavelengths considered. For example, for
lp 5 1319 nm, the intensity ratio between the e- and o-
polarized Maker fringes is approximately 10:1, so a leak-
age effect arising from strains of the order of 1025 would
be difficult to resolve. The intensity ratio between the e-
and o-polarized SHG signals for the case of lp
5 1090 nm, which gives a critical phase-matching condi-
tion, results in an intensity ratio of approximately 2.4
3 105:1. This higher ratio would provide resolution of
photoelastic artifacts that are improved over those of lp
5 1064 nm; however, it would also require a polarizer
with an extinction ratio of approximately 106:1 in order to
permit resolution of the o-polarized signal. Such high-
extinction polarizers are often difficult to obtain commer-
cially. Finally, the increased SHG efficiency near the
phase-matching peak may result in photorefractive per-
turbations that counteract the increase in sensitivity.

Considering all of these factors (sample thickness mea-
surements, photorefractive effects, photoelastic strain,
and birefringence variations), selecting lp 5 1064 nm
conveniently enables the measurement of birefringence
and strain effects simultaneously. Finally, the model for
the o-polarized Maker fringe patterns applies equally well
to a z-cut plate rotated about the y-axis for the pump po-
larization aligned with the rotation axis. An example is
shown in Section 3, in which multiple-pump and SHG
passes are considered.

3. CORRECTIONS TO THE MAKER FRINGE
PATTERNS THAT ARE DUE TO
MULTIPLE REFLECTIONS OF THE PUMP
AND THE SECOND-HARMONIC
GENERATION
The approximation described in Section 2 is sufficient for
many practical applications of Maker fringe analysis for
the measurement of LiNbO3 uniformity. Experimen-
tally, however, we find that the structure of both the e-
and o-polarized Maker fringe patterns are more complex
than the results revealed in Figs. 4 and 5. Additional
structure that is due to the multiple internal reflections of
both the pump and the SHG appears in the fringes. This
is particularly evident near u i 5 0. Furthermore, the en-
velopes of the Maker fringe patterns are significantly
changed by the inclusion of multiple reflections. There-
fore, if the analysis is to be used for accurate comparison
of nonlinear optical coefficients, allowance for these
multiple-reflection effects must be included. Given typi-
cal sample thicknesses of ;1 mm and pump-beam diam-
eters in the range of 40–100 mm, the summation of these
reflections is complicated by the fact that they pass from a
regime of overlap and interference to that of scalar addi-
tion as the plate is rotated approximately 5° from u i
5 0. In addition, in wafer-mapping experiments that
use Maker fringe analysis to track wafer thickness and bi-
refringence variations, it is desirable to save time by
minimization of the scan range of u i . Inclusion of these
multiple-pass corrections is therefore essential in order to
accurately fit the Maker fringe data in the vicinity of u i
5 0. In practice we find that the inclusion of just two
passes of the pump and three passes of the SHG is suffi-
cient to fit the e- and o-polarized fringe data to high accu-
racy. Figures illustrating superpositions of the experi-
mental data with the results of this improved modeling
are described below. Therefore, given the success and
flexibility of these approximations for the cases of practi-
cal interest described in this paper, we found it unneces-
sary to resort to the more general transfer-matrix ap-
proach described by Bethune.20

A. o-Polarized Maker Fringes Corrected for Multiple
Internal Reflections
We now compute the additional o-polarized fields that
arise from multiple reflections of the pump and SHG as
illustrated in Fig. 3. Continuity of the y-polarized SHG
fields at x 5 L requires that Ey

(R2)o be given by

Ey
~R2!o 5 Ey

~T2!o 2 Ey
o exp~ikx

sL ! 2 Ay exp~ikx
pL ! 2 Ay

~2 ! .
(39)

We ignore factors proportional to G3 that appear in the
expression for Ey

(T2)o in keeping with the approximations
established in Section 2. The fields transmitted and re-
flected from the surface at x 5 0 that are due to the inci-
dent field Ey

(R2) propagating in the 2x direction are

Ey
~T3!

5 Ey
~T3!o exp@i~2kxx 1 kzz 2 v t !#, (40a)

Ey
~R3!

5 Ey
~R3!o exp@i~kx

sx 1 kz
sz 2 v t !#. (40b)

Terms proportional to R2 are retained, but factors involv-
ing higher powers of R are neglected. Thus Eq. (39) in-
cludes the contribution of the first backward pass of the
pump field within the term Ay

(2) , whereas Eq. (40b) ne-
glects the second forward pass of the pump. The fields
reflected and transmitted at x 5 L due to the incident
field Ey

(R3) arising from the second forward pass of the
SHG are then

Ey
~T4!

5 Ey
~T4!o exp$i@kx~x 2 L ! 1 kzz 2 v t#%,

(41a)

Ey
~R4!

5 Ey
~R4!o exp$i@kx

s~L 2 x ! 1 kz
sz 2 v t#%.

(41b)

We arrive at a simple expression for Ey
(T4)o:

Ey
~T4!o 5 To Ro Ey

~R2!o exp~2ikx
s L !. (42)

The factors To and Ro are the Fresnel transmission and
reflection coefficients, respectively, for the o-polarized
SHG fields, which are given by
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To 5
2no cos fs

~no cos fs 1 cos u i!
, (43a)

Ro 5 Fno cos fs 2 cos u i

no cos fs 1 cos u i
G . (43b)

To appears implicitly in the factor G1 . The normalized
field amplitude Ēy

(T4)o 5 Ey
(T4)o/M may be expressed as

Ēy
~T4!o 5 g1 exp~i3kx

s L ! 1 g2 exp@i~2kx
s 1 kx

p!L#

1 g3 exp~i2kx
s L !, (44)

with the factors g1 , g2 , and g3 given by

g1 5 To Ro~G1 2 Ēy
o!, (45a)

g2 5 To Ro~G2 2 Āy!, (45b)

g3 5 2To Ro Āy
~2 ! . (45c)

For a pump wavelength of 1064 nm at u i 5 0, the magni-
tudes of g1 , g2 , and g3 are approximately 0.2, 0.2, and
0.075, respectively. Under the same conditions, the mag-
nitudes of G1 and G2 , which describe Ēy

(T2)o for the single-
pass case, were both approximately 1.26. Thus Ēy

(T4)o

provides a significant correction factor to the normalized
o-polarized SHG field emerging from the plate at x 5 L,
and the three terms g1 , g2 , and g3 should be retained.

We now consider corrections to the o-polarized Maker
fringe patterns that are due to the interference of mul-
tiple internal reflections of the pump field TEy

P,i and the
interference of Ey

(T2)o with Ey
(T4)o. The multiple internal

reflections of the finite-diameter pump beam are consid-
ered first. The pump field is assumed to have a trans-
verse Gaussian profile with a beam diameter of 2d and an
amplitude in the nonlinear medium of TEy

P,i . As illus-
trated in Fig. 6, only two internal reflections of the pump
are considered such that the pump field propagating in
the 1x direction within the sample is composed of a pri-
mary component, owing to the first pass, and a secondary
component that is reduced in amplitude from the primary
component by two Fresnel reflections. A crucial assump-
tion in this development is that the pump beam remains
essentially collimated at its minimum Gaussian diameter

Fig. 6. Representation of overlapping multiple reflections of the
Gaussian pump beam. Elliptical distortions of the pump-beam
profile are ignored.
even after the two internal reflections. This assumption
is valid provided that L is approximately 103 less than
the Gaussian focus parameter, or L < (pno

pd 2/10lp).
Therefore, with the typical experimental conditions of
L < 1 mm, 70 mm , 2d , 100 mm, no

p ; 2.2, and lp
5 1064 nm, the divergence of the pump beam should not
be a complicating issue. The overlap of the primary and
secondary components of the pump field will depend on
up , the Fresnel reflection coefficient R at lp , and the spa-
tial displacement of the two beams ro . We represent the
overlap heuristically by constructing an equivalent
Gaussian pump beam with amplitude Ey

P,c defined by

Ey
P,c expS 2

r2

d 2D 5 TEy
P,iH expS 2

r2

d 2D
1 R2 expS 2

r1
2

d 2D exp~i2kx
pL !J ,

(46a)

r1
2 5 r2 1 ro

2 2 2rro cos a, (46b)

ro 5 2L tan up , (46c)

r2 5 y2 1 z2. (46d)

Ey
P,c may be transformed into a convenient form by com-

puting the power carried in the pump field Py
p where only

terms of R2 are retained. Using the right-hand side of
Eq. (46a), we find that

Py
p 5

no
p

2
@TEy

P,i#2S eo

mo
D 1/2E

0

2pE
0

`H expS 22r2

d 2 D
1 2@cos~2kx

pL !#R2 expS 2
r2 1 r1

2

d 2 D J rdrda. (47)

Equating Py
p with the power computed by using the left-

hand side of Eq. (46a) gives

uEy
P,cu2 5 ~TEy

P,i!2@1 1 2R2f cos~2kx
p L !#, (48a)

f 5 exp@2~2L tan up /d!2#. (48b)

Finally, we write the complex field amplitude Ey
P,c as

Ey
P,c 5 TEy

P,ih, (49a)

h 5 @1 1 R2f exp~i2kx
p L !#. (49b)

The effect of the internally reflected pump on the normal-
ized e- and o-polarized SHG output is to introduce a com-
plex correction term to @Ey

P,c#2 that vanishes when up is
sufficiently large such that the internally reflected pump
fields do not significantly overlap. For plates nominally 1
mm thick and for typical pump beam diameters in the
range of 70–100 mm, the overlap becomes negligible for
uu iu . 5°. The correction factor h may be regarded sim-
ply as a modification of the Fresnel transmission coeffi-
cient T for the pump and thus is included as a multipli-
cative correction factor to the terms Āx , Āy , and Āz . For
d @ L, f ; 1 and Eq. (49b) reduces to the intuitive result
for infinite plane waves.

We account for the interference of the overlapping
fields Ey

(T2)o and Ey
(T4)o by computing the o-polarized SHG



2896 J. Opt. Soc. Am. B/Vol. 15, No. 12 /December 1998 N. A. Sanford and J. A. Aust
power Po , leaving the sample at x 5 L. Here Ey
(T2)o and

Ey
(T4)o are treated as the amplitudes of Gaussian beams of

diameter ds , where

Po 5
1
2 S eo

mo
D 1/2H E

0

2pE
0

`

@ uEy
~T2!ou2 1 uEy

~T4!ou2#

3 expS 2
2r2

d s
2 D rdrda 1 2 Re E

0

2pE
0

`

Ey
~T2!o~Ey

~T4!o!*

3 expF2
~r2 1 r1

2!

d s
2 GrdrdaJ . (50)

We included the relationship between the Gaussian SHG
and the pump-beam diameters, where dsA2 5 d. We de-
fine the normalized o-polarized SHG power P̄o , which is
corrected for both overlapping pump and SHG fields, leav-
ing the plate at x 5 L as

P̄o 5 (uĒy
~T2!ou2 1 2 Re$Ēy

~T2!o@Ēy
~T4!o#* %fo

1 uĒy
~T4!ou2)u~h!2u2, (51a)
P̄o 5 ~Po!Y FM2d s
2p

4 S eo

mo
D 1/2G , (51b)

fo 5 expF2S 2L tan fs

ds
D 2G . (51c)

The notation Re $ • % indicates that the real part of the en-
closed term is taken. Examples of fitting Maker fringe
data with fringe patterns computed with Eq. (51a) are
given further clarification in the discussion surrounding
Figs. 7(f ) and 7( g). These examples demonstrate that
the approach used to represent the overlapping Gaussian
pump and SHG beams works well in fitting the fringe pat-
terns over the entire angular range of u i , even though our
formalism leading up to Eq. (45) is strictly applicable only
to infinite plane waves.

A number of cases described by Eq. (51) are illustrated
in Figs. 7(a)–7(d). In all of these figures, 2d 5 70 mm,
lp 5 1064 nm, and the temperature was 25 °C. In Fig.
7(a), 0° , u i , 80° and L 5 1.002 mm. Figure 7(b)
shows the portion of the graph of Fig. 7(a) where 0°
, u i , 18° and compares the result with and without
pump–SHG overlap. Figure 7(c) compares the result
Fig. 7. Continued on facing page.
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with and without pump–SHG overlap over the portion of
Fig. 7(a) where 60° , u i , 80°. Figure 7(c) illustrates
that the scalar contribution of the internally-reflected o-
polarized SHG fields is more pronounced for wider angles
of incidence where Ey

(T2)o and Ey
(T4)o do not overlap and in-

terfere. As shown above in Fig. 5(b), where the pump–
SHG overlap was neglected, the o-polarized Maker fringe
patterns allow the resolution of sample thickness varia-
tions with a precision of approximately 60.1 mm. Figure
7(d) illustrates that the inclusion of the pump and SHG
overlap increases this precision to approximately 60.01
mm for 0° , u i , 2°.

To a first approximation, an o-polarized Maker fringe
pattern generated for a thickness L is equivalent to pat-
terns generated with thicknesses L 6 2mlc

o , where m is
an integer and the coherence length lc

o for the o-polarized
SHG interaction is defined by lc

o 5 l/2(no 2 no
p). Using

the Sellmeier equation, we find lc
o 5 5.846 mm. This

suggests that an inherent degeneracy exists, and at-
tempts to use the Maker fringe analysis to measure abso-
lute sample thickness will be ambiguous by integer mul-
tiples of 2lc

o . However, the fringe patterns generated
with L 5 1 mm and L 5 1 mm 6 2lc

o are clearly distin-
guished for u i . 40°. Assuming negligible variation in
sample thickness over the region of a single Maker fringe
scan, this aperiodicity of the o-polarized SHG fringes
Fig. 7. (a) Normalized o-polarized SHG P̄o as a function of u i that includes the effect of pump and SHG overlap. Note that the influence
of multiple-pump reflections is most evident near normal incidence, whereas the effects of multiple SHG reflections are stronger at the
extreme range of u i . Here lp 5 1064 nm, Ts 5 25 °C, L 5 1 mm, and 2d 5 70 mm. (b) P̄o (including pump and SHG reflections)
compared with P̄o

(T2) (neglecting such reflections) over the range 0° , u i , 18°. Here lp 5 1064 nm, Ts 5 25 °C, and L 5 1 mm. (c)
P̄o (including pump and SHG reflections) compared with P̄o

(T2) (neglecting such reflections) over the range 60° , u i , 80°. Here
lp 5 1064 nm, Ts 5 25 °C, L 5 1 mm, and 2d 5 70 mm. (d) P̄o over the range 0° , u i , 4° illustrating variations in resolution of
thickness where L 5 1 mm 6 0.01 mm. Over this range of u i with 2d 5 70 mm, the sensitivity of P̄o to small changes in thickness is
dominated by the multiple reflections of the pump field. Here lp 5 1064 nm and Ts 5 25 °C. (e) Graphs illustrating the approximate
periodic nature of P̄o where L 5 1.002 mm 6 2lc , lc 5 5.846 mm, lp 5 1064, and Ts 5 25°C. For 0° , u i , 18° all three graphs are
nearly identical whereas for wider angles, 70° , u i , 90°, for example, the graphs are clearly distinct and do not overlap. (f ) Fitting
of Eq. (51a) to an o-polarized Maker fringe pattern that was collected at Ts 5 25.7 °C. The fit shown was obtained with
L 5 0.98621 mm 6 0.01 mm, lp 5 1064, and 2d 5 70 mm. ( g) Fit of Eq. (51a) to an o-polarized Maker fringe data set is shown for a
sample nominally 0.2 mm in thickness. The pump beam was polarized parallel to the y axis, and the sample was a z-cut LiNbO3 plate
rotated about the y-axis during the collection of the SHG data. With L varied as the fitting parameter, the result shown illustrates the
fit when L 5 0.19559 mm 6 0.01 mm.



2898 J. Opt. Soc. Am. B/Vol. 15, No. 12 /December 1998 N. A. Sanford and J. A. Aust
therefore permits fitting the fringe pattern to a unique
value of L, provided that u i is sufficiently large. For ex-
ample, with a nominally 1-mm-thick sample an unam-
biguous coarse estimate of thickness (within 60.1 mm)
may be obtained first by fitting the o-polarized SHG
fringes in the range 5° , u i , 80°; a fine (within 0.01
mm) estimate of thickness is then obtained by fitting the
remaining fringes near normal incidence. The success of
fitting thickness to o-polarized SHG data is illustrated in
Fig. 7(f ). If the range of the data is restricted to 8°
, u i , 50°, the value of L yielding the fit shown is
0.9862 mm 6 0.1 mm. To simultaneously fit the portion
of the o-polarized data within the range 0° , u i , 8°,
where the high-frequency fringe oscillations are domi-
nated by the multiple passes of the pump, the precision of
L must be increased to 0.98621 mm 6 0.01 mm. The ac-
curacy of this computation method is determined by the
uncertainty in no , which is believed to be 62 3 1024.
This limitation was mentioned above in conjunction with
the temperature-dependent Sellmeier equation of Ed-
wards and Lawrence, which relies heavily on the experi-
mental data of Nelson and Mikulyak.14,15

To better illustrate the fit of the model with the o-
polarized fringes produced by multiple-beam interference
of the pump and SHG, a plate of nominal thickness 0.2
mm was used. The sample for this experiment was a z-
cut plate, since a similarly thick x-cut plate was unavail-
able. For the pump polarization parallel to the y-axis
and sample rotation about this axis, otherwise identical x-
and z-cut samples will produce the same o-polarized
Maker fringe patterns. The resulting o-polarized Maker
fringe data are illustrated in Fig. 7( g). The fit of the
model to the data yields the superposition shown for a
sample thickness of 0.19559 mm 6 0.01 mm. As is dis-
cussed in some detail in Section 4, with x-cut plates the
o-polarized fringes in the vicinity of normal incidence can
often be corrupted by leakage of the more intense e-
polarized SHG signal. This effect can occur as a result of
the presence of photoelastic strain in the sample. The ir-
regularity of the o-polarized SHG data in the range where
0° , u i , 15° for the x-cut sample results that appear in
Fig. 7(f ) can be attributed to such an effect. Use of a y-
pumped z-cut sample rotated about the y-axis permits a
clean illustration of the high-frequency fringes near u i
5 0 without complications of leakage introduced by the
e-polarized component. This follows since the corre-
sponding e-polarized SHG signal is necessarily minimal
near normal incidence.

B. e-Polarized Maker Fringes Corrected for Multiple
Internal Reflections
We now examine the contributions arising from internal
reflections of the e-polarized SHG. The e-polarized am-
plitude component Ez

(R2)o of the SHG field generated at x
5 L and propagating toward x 5 0 is

Ez
~R2!o 5 Ez

~T2!o 2 Ez
o exp~ikx

sL ! 2 Az exp~ikx
pL ! 2 Az

~2 ! .
(52)

Consider Fig. 3. The fields transmitted and reflected
from the surface at x 5 0, owing to Ex

(R2) and Ez
(R2) , are
Ex
~T3!

5 Ex
~T3!o exp@i~2kxx 1 kzz 2 v t !#, (53a)

Ez
~T3!

5 Ez
~T3!o exp@i~2kxx 1 kzz 2 v t !#, (53b)

Ex
~R3!

5 Ex
~R3!o exp@i~kx

sx 1 kz
sz 2 v t !#, (53c)

Ez
~R3!

5 Ez
~R3!o exp@i~kx

sx 1 kz
sz 2 v t !#, (53d)

respectively. We omit factors proportional to R4Ax and
R4Az , since such terms are assumed negligible. The
fields reflected and transmitted at x 5 L, owing to Ex

(R3)

and Ez
(R3) , are

Ex
~T4!

5 Ex
~T4!o exp$i@kx~x 2 L ! 1 kzz 2 v t#%, (54a)

Ez
~T4!

5 Ez
~T4!o exp$i@kx~x 2 L ! 1 kz z 2 v t#%, (54b)

Ex
~R4!

5 Ex
~R4!o exp$i@kx

s~L 2 x ! 1 kz
s z 2 v t#%, (54c)

Ez
~R4!

5 Ez
~R4!o exp$i@kx

s~L 2 x ! 1 kz
s z 2 v t#%. (54d)

Using Eqs. (53) and (54), the associated y-polarized mag-
netic fields, and the boundary conditions for the tangen-
tial fields, we arrive at an expression Ez

(T4)o for the field
amplitude component of the second pass of the e-polarized
SHG field emerging from the plate at x 5 L

Ez
~T4!o 5 P1 exp~i3kx

s L ! 1 P2 exp@i~kx
p 1 2kx

s !L#

1 P3 exp~i2kx
s L ! 1 P4 exp@i~kx

p 1 kx
s !L#.

(55)

The terms P1 –P4 in Eq. (55) are given by

P1 5 T4c1~b1 2 1 !Ez
o , (56a)

P2 5 T4c1@Az~b2 2 1 ! 1 b3 Ax#, (56b)

P3 5 2T4c1 Az
~2 ! , (56c)

P4 5 T4~c2Az
~2 ! 1 c3 Ax

~2 !!, (56d)

c1 5 S a1 2 a2

a1 1 a2
D , (56e)

c2 5 S kx
p 2 a2

a1 1 a2
D , (56f )

c3 5
kz

p

~a1 1 a2!
, (56g)

T4 5
2a1

a1 1 a2
. (56h)

The terms a1 and a2 are given in Eq. (30). The e-
polarized SHG power leaving the plate at x 5 L, which is
corrected for both the second pass of the pump and the
SHG, is defined by Pe , where
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Fig. 8. (a) Comparison of the normalized e-polarized SHG P̄e
(T2) (neglecting pump and SHG reflections) with the normalized e-polarized

SHG P̄e (including such reflections). Here lp 5 1064 nm, Ts 5 25 °C, L 5 0.94 mm, and 2d 5 70 mm. (b) Graphs illustrating the
same parameters and conditions as Fig. 8(a), except for L 5 0.2 mm. (c) Fitting Eq. (58a) to an e-polarized Maker fringe pattern that
was collected at Ts 5 25.7 °C. The value of L computed in regard to Fig. 7(f ) was used as an input parameter. With Dsne as the only
adjustable parameter, the fit shown was obtained with Dsne 5 21.58 3 1024 6 5 3 1026, lp 5 1064, and 2d 5 70 mm. The inset
shows the residual deviation of the model from the data for u i near 40°. Figure 12(b) shows how the inclusion of strain effects can
correct this deviation. (d) Graphs illustrating the approximate periodic nature of Eq. (58a) with respect to shifts in the extraordinary
index where Dsne 5 21.58 3 1024 2 5.32 3 1024 and Dsne 5 21.58 3 1024 1 5.48 3 1024. The sample temperature and thickness
are the same as used for Fig. 8(c). The two graphs show reasonable overlap with the same e-polarized SHG data set appearing in Fig.
8(c) with regard to locating the fringe nulls. However, neither graph shows an acceptable fit of the fringe envelope in comparison with
Fig. 8(c).
Pe 5
1

2 S eo

mo
D 1/2H E

0

2pE
0

`

@ uEx
~T2!ou2 1 uEx

~T4!ou2 1 uEz
~T2!ou2

1 uEz
~T4!ou2#expS 2

2r2

d s
2 D rdrda

1 2 Re E
0

2pE
0

`

$Ex
~T2!o@Ex

~T4!o#* 1 Ez
~T2!o@Ez

~T4!o#* %

3 expF2
~r2 1 r1

2!

d s
2 GrdrdaJ . (57)

The normalized field amplitude Ēz
(T4)o is defined by
Ez
(T4)o/N. The corresponding normalized e-polarized

SHG power leaving the plate at x 5 L is defined by P̄e ,
where

P̄e 5 (uĒz
~T2!ou2 1 2 Re$Ēz

~T2!o@Ēz
~T4!o#* %fe

1 uĒz
~T4!ou2)u~h!2u2 sec2~u i!, (58a)

5
Pe

FN2d s
2p

4 S eo

mo
D 1/2G , (58b)
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fe 5 expF2S 2L tan us

ds
D 2G . (58c)

A graph of Eq. (58a) is shown in Fig. 8(a) for lp
5 1064 nm, L 5 0.94 mm, d 5 35 mm, and Ts 5 25 °C.
Superimposed on this graph is a graph of Eq. (31), which
neglects the effects of multiple pump and SHG passes.
Figure 8(b) illustrates a graph of Eq. (58a), where L
5 0.2 mm and the remaining parameters are the same as
in Fig. 8(a).

We now consider issues involved in fitting the model to
the e-polarized Maker fringe data. The results of Berg-
man show that a variation in the Li2O composition of 0.3
mol. % leads to an approximate variation in ne of 20.02
and that the variation in no over the same compositional
range is negligible.2 These estimates relating composi-
tional uniformity to birefringence variations are consis-
tent with modern production-quality LiNbO3 crystals,
which are reported to have a uniformity of 65 3 1023

mol. % Li2O and a corresponding variation in birefrin-
gence of 67 3 1025. These data were given in a recent
list of specifications provided by a current manufacturer
of LiNbO3 (Ref. 21). If we assume that variations in com-
position are the most significant factors influencing the
optical properties of the material, then we may reason-
ably expect that no is well represented by the
temperature-dependent Sellmeier equation, whereas
compositional variations across a wafer may be revealed
by corresponding variations in ne within the range of
67 3 1025. Thus the thickness data computed by fitting
the model to o-polarized Maker fringe data may be used
as input in fitting the corresponding e-polarized data
where ne is used as the fitting parameter. In this fash-
ion, as illustrated in our earlier preliminary work, we pro-
duced maps that illustrate the variation of birefringence
factor no

p 2 ne across sample wafers.3

Equation (58a) is an approximately periodic function of
n(us) with period 6ml/L, where m is an integer. This is
also revealed by inspection of Eq. (31). For a plate of
1-mm nominal thickness l/L 5 5.32 3 1024. Therefore,
when the e-polarized Maker fringe data is fit to the model
with ne as a fitting parameter, there is the possibility of
ambiguous solutions with ne centered about multiples of
6l/L. Recall from Subsection 3.A that a similar prob-
lem arose in regards to fitting the o-polarized SHG data
by variation of the thickness. Figure 8(c) illustrates fit-
ting Eq. (58a) to e-polarized Maker fringe data with the
value of L that was computed from the corresponding o-
polarized data shown above in Fig. 7(f ). During the col-
lection of both e- and o-polarized data, the sample tem-
perature Ts was 25.7 °C. To obtain the fit shown in Fig.
8(c), the deviation of ne from the Sellmeier value ne

s was
Dsne 5 21.58 3 1024 6 5 3 1026 where, from our previ-
ous definition, Dsne 5 ne 2 ne

s . Figure 8(d) illustrates
fitting the model to the same data where ne was first off-
set from ne

s by 6l/L and then varied to obtain the fits to
the data shown. In this case the resulting values of Dsne
that permitted fitting the data to the theory were 3.90
3 1024 and 26.90 3 1024, respectively. Note that both
of these results are in close agreement with 21.58
3 1024 6 l/L, which yields 3.74 3 1024 and 26.90
3 1024, respectively.
Comparison of Figs. 8(c) and 8(d) reveals that all three
fits accurately locate the fringe nulls; however, only Fig.
8(c) simultaneously fits the envelope and the nulls, and
we therefore regard the value of 21.58 3 1024 6 5
3 1026 as correctly representing the deviation of ne from
the Sellmeier equation under the assumption that no

p de-
rived from the Sellmeier equation is accurate. The
manufacturer’s specifications give uncertainties in no and
ne (at a wavelength of 632.8 nm) of approximately 62
3 1024. Thus the uncertainty in no

p is roughly a factor
of 2.7 less than the index ambiguity introduced by l/L as
illustrated in Figs. 8(c) and 8(d). The conclusion that
Dsne should be negative and fall in the range of a few
parts in 1024 is further discussed in Section 5. Finally,
as illustrated with the inset in Fig. 8(c), a closer inspec-
tion of the results reveals that as u i increases from 20° to
40° a deviation of approximately 0.2° between the pre-
dicted and measured positions of the fringe nulls is accu-
mulated. This discrepancy cannot be compensated for by
further variation of ne without degrading the portion of
the fit between normal incidence and 20°. In Section 4
we show how the inclusion of photoelastic strain effects
may be used to account for this remaining discrepancy.

4. VARIATIONS IN THE MAKER FRINGE
PATTERNS THAT ARE DUE TO
PHOTOELASTIC EFFECTS
Under the same o-polarized pumping conditions, the in-
tensity of the e-polarized Maker fringes is approximately
103 –104 larger than the corresponding o-polarized
fringes. In collecting the o-polarized SHG data we must
therefore carefully null the dominant e-polarized signal
with a suitable-quality polarizer. Often, however, sig-
nificant leakage of the e-polarized SHG signal will corrupt
the o-polarized fringes, regardless of the care taken to
align the sample or the polarizer. A minor example of
this effect is present in the data shown in Fig. 7(f ), par-
ticularly for 0° , u i , 20°. A severe example of this
leakage effect is illustrated in Fig. 9, which shows a su-
perposition of both the e- and o-polarized fringes taken at
the same point on the sample. Extra fringes occur in the
o-polarized data, which align exactly with the correspond-
ing e-polarized fringes. With the analyzer orientation
fixed, this leakage effect may vary drastically for Maker
fringe scans taken at positions on the sample separated
by less than 1 mm. These effects are routinely seen in
many wafers and occur without the presence of scratches,
cracks, or obvious flaws. We now consider the role of
photoelastic effects in causing these artifacts.22

The optical impermeability tensor h ij is defined by
e imh ij 5 dmj (where d ij is the Kronecker delta and should
not be confused with our earlier definition of the pump-
beam diameter). Variations in h ij that are due to strain
are given by the contraction of the photoelastic tensor
Pijkl with the strain tensor Skl where

Dh ij 5 PijklSkl . (59)

The components of the variations to the impermeability
tensor are denoted by Dh ij and reduce to
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Dh11 5 P11S1 1 P12S2 1 P13S3 1 2P14S4 , (60a)

Dh12 5 2P14S1 1 ~P11 2 P12!S6 , (60b)

Dh13 5 2P44S5 1 2P41S6 , (60c)

Dh22 5 P12S1 1 P11S2 1 P13S3 2 2P14S4 , (60d)

Dh23 5 P41S1 2 P41S2 1 2P44S4 , (60e)

Dh33 5 P31S1 1 P31S2 1 P33S3 . (60f )

In Eq. (60), Dh ij 5 Dh ji for i Þ j. Variations in the di-
electric tensor De ij that are due to variations in the im-
permeability tensor Dh ij follow from differentiation of
e imhmj 5 d ij , where

De ij 5 2e imDhmnenj . (61)

The components of De ij are

De11 5 2~e11!2Dh11 , (62a)

De12 5 2e11e22Dh12 , (62b)

De13 5 2e11e33Dh13 , (62c)

De22 5 2~e22!2Dh22 , (62d)

De23 5 2e22e33Dh23 , (62e)

De33 5 2~e33!2Dh33 . (62f)

The tensor De ij is symmetric: De ij 5 De ji for i Þ j.
Consider that the leakage of the e-polarized SHG into

the o-polarized SHG is caused by a strain-induced rota-
tion of the optic axis about the x axis by an angle z. The
situation is illustrated in Fig. 10. The unprimed coordi-
nate system represents the geometric axes of the crystal,
which also conforms to the transmission axis of the out-
put polarizer. The sample is rotated about the y axis
during the recording of the Maker fringe data. In the
presence of a strain or a collection of strains, which couple
y and z, the unprimed axes are no longer the principal

Fig. 9. Data showing the corruption of the weaker o-polarized
Maker fringe data by the dominant e-polarized SHG signal.
Note that the extra fringes in the o-polarized data align exactly
with the corresponding e-polarized data taken at the same point
on the sample as indicated by the arrows. This effect is often
highly localized such that an o-polarized scan performed at a po-
sition less than 1 mm away may show substantially greater or
lesser corruption.
axes of the crystal and the dielectric tensor e ij is not di-
agonal. The primed axes y8 and z8 represent the new co-
ordinate system where the dielectric tensor e ij8 is diago-
nal. The fully rigorous approach is to transform dijk into
the new coordinate system and thus find the terms d228
and d318 and the new ordinary and extraordinary indices
of refraction. Experimentally, however, the actual angle
z is typically a few milliradians; thus we work within the
approximation that d318 5 d31 and d228 5 d22 . The addi-
tional o8-polarized SHG field arising from this leakage ef-
fect is the projection of the e8-polarized component Ēz

(T2)o8

onto the original y axis as defined by the output polarizer.
Within our approximation Ēz

(T2)o8 ; Ēz
(T2) . For simplic-

ity, we consider this effect only within the single-pass ap-
proximation of the pump and SHG fields.

We now estimate the strain-induced rotation of the op-
tic axis based on the SHG leakage. A collection of strains
that result only in the rotation of the optic axis about the
x-axis modifies the dielectric tensor and introduces the
off-diagonal term j, where

e ij 5 F no
2 0 0

0 no
2 j

0 j ne
2
G . (63)

From Eq. (62e), the photoelastic strain factor j is given by

j 5 2~neno!2@P41~S1 2 S2! 1 2P44S4#. (64)

S1 and S2 are both axial strains, and S4 is a shear strain.
The dielectric tensor e ij may be transformed into a new
system of coordinates in which it is diagonal by applica-
tion of aki , where

ekl8 5 akialje ij , (65a)

aki 5 F 1 0 0

0 cos z sin z

0 2sin z cos z
G . (65b)

The nonzero terms of e ij8 are

e118 5 e11 , (66a)

e228 5 e22 cos2 z 1 e33 sin2 z 1 j sin 2z, (66b)

e238 5 @e33 2 e22#
sin 2z

2
1 j cos 2z, (66c)

e338 5 e22 sin2 z 1 e33 cos2 z 2 j sin 2z. (66d)

The transformed tensor e ij8 is diagonal if e238 5 0. The
angle of rotation z that makes e ij8 diagonal reduces to the
approximate expression

z ;
j

~e22 2 e33!
. (67)

The resulting y-polarized SHG field emerging from the
plate at x 5 L, which includes the contribution that is
due to the leakage of the z-polarized component, is
Ey

(T2)o 1 z Ez
(T2)o. To properly scale the leakage artifact

as it appears in the Maker fringes, we must weigh the
normalized amplitudes Ēy

(T2)o and Ēz
(T2)o, which were com-
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Fig. 10. (a) Schematic of the strain-induced rotation of the optic axis about x by an angle z, leading to leakage of the e-polarized SHG
signal into the o-polarized data as shown in Fig. 9. The transformed axis z8 is associated with the transformed extraordinary index ne8

and the transformed normalized e8-polarized SHG field Ēz
(T2)8 . The transformed axis y8 is associated with the transformed ordinary

indices ny
p8 and ny8 at the pump and SHG wavelengths, respectively. The y axis conforms with the orientation of the output polarizer

used to separate the e- and o-polarized SHG signals. The projection of Ēz
(T2)8 onto y is approximately zĒz

(T2) . (b) Normalized o-
polarized SHG P in the presence of strain-induced leakage of zĒz

(T2) . The case in which strain-induced rotation of the optic axis
z 5 0 is compared with z 5 20.002 and z 5 20.004. (c) Improved fit of the o-polarized SHG data shown above in Fig. 7(f ) when a
strain induced rotation z 5 20.004 is included. (d) Appearance of extra features in the o-polarized SHG fringes that conform to the
corresponding e-polarized fringes are indicated by the vertical arrows. The angle z 5 20.01.
puted above, with the respective nonlinear coefficients
d22 and d31 . We now define the normalized y-polarized
SHG power Po that leaves the plate at x 5 L as Po

5 uĒy
(T2)o 1 z Ēz

(T2)ou2 or

Po 5 uĒy
~T2!ou2~d22!2 1 uĒz

~T2!ou2~zd31!2

1 2zd31d22 Re $Ēy
~T2!o@Ēz

~T2!o#* %. (68)

For purposes of scaling, we define the normalized nonlin-
ear coefficients d22 and d31 , which are equal to 2.2 and
24.6, respectively. The corresponding nonlinear coeffi-
cients d22 and d31 are equal to 2.2 3 10212 pm V21 and
24.6 3 10212 pm V21, respectively.23 In Eq. (68) we
omitted the multiple passes of the pump and SHG for
simplicity. Nevertheless, the expression should be ac-
ceptably accurate for uu iu . 5° for the typically 1-mm-
thick wafers considered here. For strain-induced rota-
tions of the optic axis about x, the extraordinary SHG
component Ēx

(T2)o does not contribute to the leakage effect
described by Eq. (68). In principle, a rotation of the
x-axis about z would be revealed by a strain-induced leak-
age of the Ēx

(T2)o component into Ēy
(T2)o. However, leak-

age is most strongly revealed in the majority of cases for
uu iu , 20°, which suggests that effects that are due to
Ēz

(T2)o are dominant, since Ēx
(T2)o 5 2Ēz

(T2)o tan ui .
Graphical examples of Eq. (68) are given in Fig. 10(b),

10(c), and 10(d). In Fig. 10(b), Ts 5 25.7 °C, L
5 0.98621 mm and three curves are displayed with z
5 0, z 5 20.002 rad, and z 5 20.004 rad, respectively.
In Fig. 10(c) the same values of Ts and L are used with
z 5 20.004 rad, and the result is displayed with the ex-
perimental data of Fig. 7(f ). These graphs are represen-
tative of typical data in the sense of displaying a 10–30%
deviation of the o-polarized Maker fringe envelopes from
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the predicted behavior. From these results we may cal-
culate the approximate magnitude of the strain. Using
Eqs. (64) and (67), and the Sellmeier equation evaluated
at 25.7 °C, we find

z 5 266.49@P41~S1 2 S2! 1 2P44S4#. (69)

Equation (69) does not allow for the unique assignment of
the strains responsible for the observed leakage artifacts,
nor does it permit separation of the shear strain S4 from
axial strain components S1 and S2 . It nevertheless per-
mits us to estimate the magnitude of the aggregate strain
responsible for the observed leakage artifact. For this
approximation we use the values of P41 5 20.151 and
P44 5 0.146 as given by Avakyants et al.24 Equation (68)
then leads to the conclusion that the magnitude of the ag-
gregate strain is ;2 3 1024. In some instances the
strain may be substantially higher. Indeed, for the extra
e-polarized fringes to be clearly distinguished from the
o-fringes, as is the case illustrated in Fig. 9, inspection of
Eq. (68) reveals that z must be of the order of 0.01 rad.
Figure 10(d) illustrates an example of this effect where
Ts 5 25 °C, L 5 1 mm, and z 5 0.01 rad.

We now calculate the perturbation to the quantity no
p

2 ne , which is caused by a rotation of the optic axis
about x by an angle z. From Eqs. (65b) and (66d) we have

nx8 5 no , (70a)

ny
p8 5 no

p8 5 @~no
p!2 2 ~ne

pz!2 1 2~zno
p!2#1/2, (70b)

nz8 5 ne8 5 @~ne!
2 2 ~noz!2 1 2~zne!

2#1/2. (70c)

Using z 5 2 3 1023, we find

no
p8 2 ne8 ; no

p 2 ne 1 7 3 1027, (71a)

no
p8 2 no8 ; no

p 2 no 2 2 3 1027. (71b)

These results indicate that strains that cause the corrup-
tion of the o-polarized SHG signal with the e-polarized
SHG signal, such that z ; 2 3 1023, are not themselves
effective in producing separately measurable variations
in either the e- or o-polarized fringes by means of direct
perturbation of the refractive indices. The minimum
variation in no

p 2 ne that could be resolved from the
e-polarized fringes was approximately 65 3 1026. For
the o-polarized fringes, a variation of 2 3 1027 in the
quantity no

p 2 no is not resolved when computed with Eq.
(51a). However, in the regime of larger strains where z
; 1022, the direct perturbations to the refractive indices
ne , no , and no

p are all of the order of 1025. In this case
shifts in the e-polarized fringes that are due to strain are
indistinguishable from the effects of compositional fluc-
tuations. Furthermore, the o-polarized fringes would be
so heavily corrupted, as illustrated in Figs. 9 and 10(d),
that use of such data to compute sample thickness may be
problematic.

A feature of the e-polarized SHG that may be attrib-
uted to a second photoelastic effect appears as an asym-
metric angular displacement of the fringes. The effect is
illustrated in Fig. 11(a). This figure shows the superpo-
sition of two separate e-polarized Maker fringe scans in
which the data were collected consecutively from loca-
tions on the sample separated by 60 mm. The rotation
stage system was set so that normal incidence of the
pump (u i 5 0) was defined by careful location of the
Fresnel reflection of the pump beam folded back into the
input optics. A comparison of these two fringe patterns
shows a relative displacement with respect to u i of ap-
proximately 0.1°. Taken together with the results of
Subsection 3.B, these results suggest that variations be-
tween e-polarized Maker fringes taken at separate posi-
tions on a sample can reveal compositional fluctuations
through small symmetric fringe displacements and also
reveal fluctuations in strain through small asymmetric

Fig. 11. (a) Asymmetric angular shift of e-polarized Maker
fringe patterns with respect to pump angle of incidence u i . The
two e-polarized data scans shown were collected from locations
separated by 60 mm on the sample. Note that the relative dif-
ference between these data sets is characterized by a symmetric
breathing of the fringes with respect to u i as well as an asymmet-
ric displacement of the two sets with respect to u i . The breath-
ing effect may be described by composition-induced variations in
Dsne , and the asymmetric displacement is described by a strain-
induced rotation of the optic axis about y. (b) Schematic illus-
trating the strain-induced rotation of the optic axis about y by an
angle q with respect to the incident pump field, the e-polarized
SHG field, and the original crystal axes.
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fringe displacements. An asymmetric fringe displace-
ment will arise if a strain artifact c is present that pro-
duces a rotation of the optic axis about y by an angle q.
Under such conditions the dielectric tensor becomes

e ij 5 F no
2 0 c

0 no
2 0

c 0 ne
2
G . (72)
polarized SHG fields at x 5 0. Figure 11(b) shows that
the rotation of the optic axis by q imposes on Eq. (17c) the
modification

sin u i 5 n~us 2 q!sin us . (76)

With the use of Eq. (10a), Eq. (76) may be solved for
sin us . The result is
sin us 5 H 2~2A1A2 1 4A3
2q 2! 1 @~2A1A2 1 4A3

2q 2!2 2 4A1
2~A2

2 2 4A3
2q 2!#1/2

~2A1
2!

J 1/2

. (77)
The tensor of Eq. (72) may be put in diagonal form by ro-
tation about y with

ekl8 5 akialje ij , (73a)

aki 5 F cos q 0 2sin q

0 1 0

sin q 0 cos q
G . (73b)

Performing operations similar to that which resulted in
Eq. (67), we find that the angle q that diagonalizes Eq.
(72) is approximately given by

q 5
c

ne
2 2 no

2 , (74a)

c 5 ne
2no

2@P44S5 1 P41S6#. (74b)

This equation shows that shear strains S5 and S6 are the
only factors that can produce a rotation of the optic axis
about y. As a numerical example, let us assume that
only the S6 shear strain is present and that the magni-
tude of the strain is approximately 1 3 1024. We then
find that q 5 1 3 1023 rad or ;0.05°. The correspond-
ing direct corrections to the indices of refraction assume
the same form as Eqs. (70), with

nx8 5 @no
2 2 ~qne!

2 1 2~qno!2#1/2, (75a)

ny8 5 no , (75b)

nz8 5 @ne
2 2 ~qno!2 1 2~qne!

2#1/2. (75c)

Evaluation of Eq. (75c) shows that the direct strain-
induced perturbation to the extraordinary index nz8 2 ne
is approximately 1 3 1026 for the strain resulting in
q 5 1 3 1023 rad.

As a consequence of the aggregate effect of S5 and S6
shear strains resulting in a net strain of the order of
1 3 1024, the greatest perturbation to the quantity
(2p/l)L @no

p 2 n(us)# (which defines the principal oscil-
lation period of the e-polarized fringes) is the rotation of
the optic axis about y and not the direct strain-induced
corrections to ne or no

p . The effect of this rotation on the
e-polarized Maker fringe data can then be modeled by re-
considering the boundary conditions on pump and e-
Equation (77) was derived under the approximation
sin q ; q. The factors A1 , A2 , and A3 are given by

A1 5 ~ne
2 2 no

2!sin2 u i 2 ~neno!2, (78a)

A2 5 ~no sin2 u i!
2, (78b)

A3 5 ~no
2 2 ne

2!sin2 u i . (78c)

Thus us may be written directly as a function of u i and q.
Equation (77) reduces to Eq. (17c) for q 5 0.

As a graphical example of these effects, Fig. 12(a) illus-
trates the asymmetric shift in the e-polarized fringes that
is due to a rotation q 5 23 3 1023 rad. Superimposed
in the figure is a graph where Dsne 5 2 3 1025. Com-
parison of the graphs in Fig. 12(a) reveals that a shift in
the e-polarized fringes arising from variations in ne that
are independent of strain may be distinguished from
shifts that are due to strain-induced rotations of the optic
axis about y. Variations in ne , which may arise from
compositional fluctuations, are revealed by a symmetric
breathing of the fringes with respect to u i . Strain-
induced rotations q are characterized by an asymmetric
shift of the fringes. Furthermore, fringe shifts that are
due to variations in ne alone are more evident for uu iu
, 15° and become negligible at wider angles, since n(us)
becomes more weighted by no . In contrast, the asym-
metric fringe shift that is due to q appears nearly uniform
over the full range of u i . Therefore the different effects
of the two perturbation features on the e-polarized Maker
fringes allow for the distinction of birefringence varia-
tions that arise from strain from those that are due to
compositional fluctuations in the material. Figure 12(b)
illustrates this feature by displaying an improved fit of
the model to the data shown in Fig. 8(c) with the inclusion
of a small rotation q. The parameters used to obtain this
fit were Dsne 5 21.58 3 1024, L 5 0.98621 mm, 2d
5 0.07 mm, just as in Fig. 8(c), and q 5 28 3 1024

rad. This magnitude of the strain-induced rotation
about y corresponds to an aggregate strain that is due to
S5 and S6 of approximately 8 3 1025. In our approach
in this section we adopted the simplified view of sepa-
rately considering rotations z and q rather than the more
rigorous method of including perturbations c and j in the
dielectric tensor and then finding the rotation angles with
a principal axis transformation. Nevertheless, since the
angles z and q are typically of the order of few milliradi-
ans, the simplified approach should remain valid.
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5. DISCUSSION
The results of Section 4 show that, if the Maker fringe
analysis is intended for use in tracking composition gra-
dients across a wafer, we must vary both ne and q in fit-
ting the model to the e-polarized SHG data. This enables
distinguishing birefringence variations that are due to
composition from those that are due to strain, provided
that the strains are not large enough to produce direct
variations in ne of approximately 1025 or larger. A
composition-dependent variation in ne will produce a
symmetric breathing of the fringes, whereas the strains
responsible for an optic axis rotation q produce an asym-
metric shift in the fringes. The two effects may thus be

Fig. 12. (a) Asymmetric shift in the e-polarized fringes that re-
sults with the inclusion of aggregate shear strains that are due to
S5 and S6 , resulting in q 5 23 3 1023 with Ts 5 25 °C, lp
5 1064, and 2d 5 70 mm. Also shown is a graph with Dsne
5 2 3 1025. Comparison of these graphs shows that varia-
tions in the fringes that are due to Dsne are more heavily
weighted near normal incidence, whereas while shifts in the
fringes that are due to rotations q appear throughout the full
range of u i . (b) Improvement of the fit shown in Fig. 8(c) by
the inclusion of a small strain-induced rotation q of the optic
axis about y. Dsne 5 21.58 3 1024, q 5 28 3 1024 rad, lp
5 1064, and 2d 5 70 mm. The inset details the improved fit
for u i near 40°.
distinguished even though the magnitude of the fringe
perturbation is approximately the same in either case.
This conclusion is further reinforced by the fact that the
observed magnitude of the collective strains usually fall
in the range of 1025 –1024 and are therefore not suffi-
ciently large to cause a directly resolvable increase or de-
crease in the indices of refraction. Rather, it is the
strain-induced rotations of the optic axis about x and y
that are primarily revealed.

Such a distinction could not be made as easily if the bi-
refringence variation were tracked by means of tempera-
ture tuning to produce noncritical phase matching. This
point is understood by consideration of Fig. 13. The fig-
ure illustrates temperature tuning to achieve noncritical
phase matching in an x-cut LiNbO3 sample where L
5 1 cm. For simplicity, multiple-pump and SHG reflec-
tions were ignored and Eq. (31) was used to generate the
graphs. The FWHM of both curves shown is ;1.1 °C,
and Dsne 5 25 3 1025 corresponds to a temperature
variation of approximately 1.4 °C. These results show
that noncritical phase matching may be used to track bi-
refringence variations with a precision of approximately
62 3 1025, provided that the sample is ;1 cm in thick-
ness or greater. However, an interaction length of ;1 cm
defeats the purpose of crystal uniformity measurements,
since such a large volume of material is sampled. In-
deed, from a section of boule 1 cm thick it is possible to
produce nearly nine finished wafers. By contrast, the
Maker fringe analysis method retains a sensitivity to bi-
refringence of approximately 65 3 1026 for samples in
the thickness range of 0.2–1 mm.

The situation illustrated in Fig. 13 predicts a noncriti-
cal phase matching temperature Tpm of approximately
219.5 °C. This result deviates drastically from Tpm , fall-
ing in the range of 21.2 °C to 28.5 °C that is expected for
modern congruently grown material.4 In Fig. 14 we
show that allowing Dsne to vary from 24.8 3 1024 to
28 3 1024 will produce graphs of P̄e

(T2) that enclose this
expected excursion of Tpm . This observation that Dsne
must be negative with a magnitude of the order of a few
parts in 1024 is consistent with fitting of our model to the
data shown in Fig. 8(c). In that case we found Dsne
5 21.58 3 1024 at a temperature of 25.7 °C. The fact
that these two offsets in ne do not exactly agree is no

Fig. 13. P̄e
(T2) as a function of temperature with L 5 1 cm. The

FWHM of P̄e
(T2) is ;1.2 °C. Also shown is the shift of graph as-

sociated with Dsne 5 25 3 1025.
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cause for concern, since the uncertainty in no in the origi-
nal data that defines the Sellmeier equation is 62
3 1024. Also, the Sellmeier equation suffers from a sys-
tematic error in temperature of 3 °C (see Ref. 14). Since
the defining data for the Sellmeier equation was collected
at 24.5 °C, we assume that the systematic error in tem-
perature introduces additional uncertainty in the calcu-
lated indices of refraction, particularly ne , for sample
temperatures differing substantially from room tempera-
ture. Figure 13 may also be used to illustrate that an off-
set in the Sellmeier equation of 3 °C can be interpreted as
Dsne ; 1 3 1024. Considering all of these uncertain-
ties, the range of Dsne predicted with noncritical phase
matching for temperatures near 0 °C compares well with
the value of Dsne calculated in conjunction with the re-
sults of Fig. 8(c) for the sample temperature of 25.7 °C.

It is tempting to suggest that measurements of wafer
birefringence uniformity may be just as easily evaluated
by means of linear optics as by nonlinear optics. Such
criticisms, however, are easily dismissed by simple argu-
ments. Consider the sample thickness L. An accurate
map or grid of sample thickness is required in order to as-
sess the variation in linear birefringence no 2 ne over the
corresponding positions on the sample. If such a thick-
ness map has been assembled by some means, linear bi-
refringence variations across a sample could be performed
by measurement of perturbations in the retardation FL ,
where FL 5 (2p/lp)(no

p 2 ne
p)L. Assuming for the mo-

ment that no
p 2 ne

p is accurately given by the Sellmeier
equation and that FL may be measured by conventional
methods with an uncertainty of 60.1°, for T 5 25 °C and
L 5 1 mm 6 3.9 nm, then a variation in birefringence of
63 3 1027 may be resolved. Thus a thickness uncer-
tainty of 63.9 nm would be indistinguishable from bire-
fringence variations within 63 3 1027. Consequently,
birefringence variations of 63 3 1026 corresponding to
excursions in FL of 61° would be clearly distinguishable
from thickness variations. By contrast, as shown above
in Fig. 4(b), for u i . 4° the e-polarized Maker fringe pat-
terns permit resolving variations in ne of 65 3 1026,
even with thickness variations of 61 mm. The Maker
fringe approach therefore offers enormous practical ad-

Fig. 14. P̄e
(T2) is illustrated with Dsne varied from 24.8 3 1024

to 28 3 1024. This range of Dsne produces graphs of P̄e
(T2) that

bracket the excursion of the phase-matching temperature Tpm
that is expected for congruently grown material, as discussed in
Ref. 4.
vantage for resolving variations in birefringence, since
the constraint on the thickness resolution is reduced by
;3 orders of magnitude. Furthermore, the thickness
map derived from the o-polarized SHG data is automati-
cally indexed to the map of birefringence variation de-
rived from the e-polarized data, since both data sets may
be collected at the same time. Finally, a thickness-
measuring apparatus that is capable of producing
nanometer-scale resolution over full-sized LiNbO3 wafers
could be constructed. However, the practicality and ex-
pense of such a machine is far outweighed by the relative
simplicity and economy of the Maker fringe apparatus.

An additional application of the Maker fringe analysis
could be for collection of index-of-refraction data over a
wide spectral range. The key point is that flat samples
could be used, thus eliminating the need to grind pre-
cisely shaped prisms that are required for the traditional
minimum-deviation method.15 An outline for the experi-
mental procedure is as follows: Two samples measuring
;5 mm2 are lapped to separate thicknesses, say, 1.0000
and 0.8000 mm. A precision micrometer is used to con-
firm the thicknesses at the center of the samples. Maker
fringe scans are then performed at the same locations.
Since the thicknesses are separately known, an iterative
fitting procedure applied to the o-polarized Maker fringes
would allow the simultaneous solution for both no and
no

p . These data are used to fit the e-polarized fringes,
and the associated value of ne is computed. As a confir-
mation of the computed value of ne , the samples are re-
mounted so that they rotate about their z-axes during the
collection of the SHG data and the pump is polarized
along the z-axis. This scanning orientation will produce
e-polarized SHG with the fringe oscillation depending on
the quantity ne

p 2 ne . Again, since the thicknesses of
both test plates are known, an iterative fitting scheme
can be used to compute both ne

p and ne . A particularly
interesting feature of this procedure is that index-of-
refraction data at both the pump and SHG wavelengths
are directly obtained. A Ti:sapphire laser could serve as
a convenient pump source to generate index data in the
visible and in the near infrared. A Nd:YAG-pumped
OPO could be used to extend the measurement range fur-
ther into the infrared.

Finally, the observation that shear strains participate
strongly in the photoelastic effects that appear as asym-
metric displacement of the e-polarized Maker fringes is
consistent with the theoretical arguments of Nelson and
Lax, who pointed out that rotations play a significant role
in the photoelasticity of birefringent crystals in the pres-
ence of shear distortions.24 Furthermore, shear strains
in crystalline media are known to be associated with
dislocations.25,26

6. CONCLUSIONS
Maker fringe analysis is a convenient and powerful tool
that may be used for the unambiguous measurements of
sample thickness L and birefringence no

p 2 ne , where, for
both cases, the accuracy is determined by the accuracy in
no and no

p . Furthermore, the method is sensitive enough
to detect variations in birefringence with a resolution of
65 3 1026 and to distinguish such variations that arise
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from composition fluctuations from those that are due to
strain, provided that the aggregate strain does not exceed
a few parts in 1024. This sensitivity in birefringence
resolution represents an improvement by a factor of ;5
over methods of temperature-tuned noncritical phase
matching. Additionally, the thickness resolution scale
over which the birefringence is probed is limited by the
coherence length of the interaction. Therefore the Maker
fringe analysis offers birefringence resolution of 65
3 1026 in a thickness resolution scale of a few hundred
micrometers. The noncritical phase-matching method
requires a sample 1–2 cm in thickness to attain a bire-
fringence resolution of approximately 62 3 1025.

Two distinct effects of strain were apparent in the
Maker fringe data: The first was revealed by the leakage
of the dominant e-polarized SHG signal into the weaker
o-polarized signal. This effect was attributed to an inde-
terminant combination of axial strains S1 and S2 and
shear strain S4 . The second strain artifact was revealed
by an asymmetric shift of the e-polarized Maker fringes
with respect to the angle of incidence of the pump beam
and was attributed to an indeterminant combination of
shear strains S5 and S6 . For both types of strain phe-
nomenon, the magnitude of the collective strains was
typically of the order of a few parts in 1024. Occasion-
ally, however, larger strains were revealed by the severe
leakage of e-polarized SHG signal into the o-polarized
data. In the next paper of this series we will present the
results of fitting our models to Maker fringe data taken in
grid patterns over full LiNbO3 wafers, illustrate maps of
wafer uniformity in terms of composition and strain, and
compare results generated under chopped continuous-
wave, Q-switched, and mode-locked Q-switched pumping
conditions.
APPENDIX A: DEFINITION OF SYMBOLS

L,Ts thickness and temperature respectively, of LiNbO3 sample;
lp vacuum wavelength of the pump field;
l 5 lp/2 vacuum wavelength of second harmonic field;
vp angular frequency of the pump field;
v angular frequency of the second-harmonic field;
u i angle of incidence of pump field;
uR angle of reflection of pump field;
uP angle of refraction of the pump field in the LiNbO3;
upm critical phase-matching angle;
us angle of refraction of the e-polarized SHG field in the LiNbO3;
fs angle of refraction of the o-polarized SHG field in the LiNbO3;
no

p ordinary index at lp calculated from the Sellmeier equation of Ref. 14;
ne

p extraordinary index at lp calculated from the Sellmeier equation of Ref. 14;
no ordinary index at the l calculated from the Sellmeier equation of Ref. 14;
ne extraordinary index at l derived from fitting e-polarized Maker fringe data;
ne

s extraordinary index at l calculated from the Sellmeier equation of Ref. 14;
Dsne Dsne 5 ne 2 ne

s ;
n(us) extraordinary index as a function of us ;
g i 5 2p/lp magnitude of the wave vector of the incident and reflected pump fields;
g p 5 2pno

p/lp magnitude of the pump-field wave vector in the LiNbO3;
g x

p , y z
p g p cos uP and g p sin uP , respectively;

k, k 5 2p/l vacuum magnitude of the e- and o-polarized SHG wave vectors, respectively;
kx , kz and kx , kz k cos ui and k sin ui , respectively;
2g p 5 kp [ no

pk magnitude of the wave vector for the nonlinear source polarization;
kx

p , kz
p kp cos uP and kp sin uP , respectively;

ks 5 nok magnitude of the o-polarized SHG wave vector in the LiNbO3;
kx

s , kz
s ks cos fS and ks sin fS , respectively;

ks 5 n(us)k magnitude of the e-polarized SHG wave vector in the LiNbO3;
kx

s , kz
s ks cos uS and ks sin uS , respectively;

Ey
P,i amplitude of the y-polarized pump field propagating in the 1x direction incident on the

LiNbO3 sample at x 5 0;
Ey

P,T1 amplitude of the y-polarized electric field of the pump propagating in the 1x direction
transmitted through the surface of the LiNbO3 sample at x 5 0;

T, R Fresnel transmission and reflection coefficients, respectively, of the pump at the air–
LiNbO3 interface;

Pz component of the nonlinear source polarization parallel to the LiNbO3 z axis that is due
to the y-polarized pump field acting on the d31 nonlinear coefficient;
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Py component of the nonlinear source polarization parallel to the LiNbO3 y axis that is due
to the y-polarized pump field acting on the d22 nonlinear coefficient;

Ex
o , Ey

o , Ez
o homogeneous solutions for the SHG electric-field amplitudes propagating in the 1x di-

rection arising from the first pass of the pump;
Ex

(R1)o, Ey
(R1)o, Ez

(R1)o Homogeneous solutions for the SHG electric-field amplitudes propagating in the 2x di-
rection generated in reflection from x 5 0;

Ēx
(R1)o, Ēy

(R1)o, Ēz
(R1)o normalized versions of Ex

(R1)o, Ey
(R1)o, and Ez

(R1)o;
Ex , Ey , Ez general inhomogeneous solutions for the SHG electric-field amplitudes propagating

through the LiNbO3 in the 1x direction arising from the first pass of the pump;
Hx , Hy , Hz general inhomogeneous solutions for the SHG magnetic-field amplitudes propagating

through the LiNbO3 in the 1x direction arising from the first pass of the pump;
Ex

(R2)o, Ey
(R2)o, Ez

(R2)o Homogeneous solutions for the SHG electric-field amplitudes propagating in the 2x di-
rection generated by the reflection of the pump at x 5 L;

To , Ro Fresnel transmission and reflection coefficients for Ey
(R2)o at the LiNbO3–air boundary;

Ex
(R2) , Ey

(R2) , Ez
(R2) general inhomogeneous solutions for the SHG field amplitudes propagating in the 2x

direction generated by the reflection of the pump at x 5 L;
Ex

(T2)o, Ey
(T2)o, Ez

(T2)o solutions for the SHG electric-field amplitudes propagating in the 1x direction trans-
mitted through the surface at x 5 L, owing to the first pass of the pump;

Ēx
(T2)o, Ēy

(T2)o, Ēz
(T2)o normalized versions of Ex

(T2)o, Ey
(T2)o, and Ez

(T2)o;

Ex
(T3)o, Ey

(T3)o, Ez
(T3)o solutions for the SHG electric-field amplitudes propagating in the 2x direction trans-

mitted through the surface at x 5 0, owing to the second pass of the pump;
Ex

(T4)o, Ey
(T4)o, Ez

(T4)o solutions for the SHG electric-field amplitudes propagating in the 1x direction gener-
ated by the reflection of the second pass of the pump at x 5 0 and transmitted through
the second surface at x 5 L;

Ēx
(T4)o, Ēy

(T4)o, Ēz
(T4)o normalized versions of Ex

(T4)o, Ey
(T4)o, and Ez

(T4)o;

P̄e
T2 normalized e-polarized SHG power leaving the crystal at x 5 L, owing to a single pass

of the pump and SHG;

P̄o
T2 normalized o-polarized SHG power leaving the crystal at x 5 L, owing to a single pass

of the pump and SHG;

P̄e
normalized e-polarized SHG power leaving the crystal at x 5 L, owing to multiple
passes of the pump and SHG;

P̄o
normalized o-polarized SHG power leaving the crystal at x 5 L, owing to multiple
passes of the pump and SHG;

j photoelastic strain factor producing a rotation of the optic axis about x;
z angle of rotation of optic axis about x arising from strain factor j;
Po normalized o-polarized SHG leaving the crystal at x 5 L, which is corrupted by a

strain-induced e-polarized component. Only a single pass of pump and SHG is consid-
ered;

c photoelastic strain factor producing a rotation of the optic axis about y;
q angle of rotation of optic axis about y arising from strain factor c.
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